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The Deformation of Polymers

Part V - Modern Conceptions of the Mechanical Work Capacity

of Polymers

By the term "mechanical work capacity," we mean the ability

of the polymers to avoid fracture and softening under given

conditions of mechanical and thermal action. Having thus

defined the work capacity of pcolymers, one may immediately point

to two reasons for loss work capacity (or "load-carrying capacity,"

applicable to structures). The first reason is the fracture of
a polymeric material with very small deformations. The second
reason is the softening of a polymeric material, causing the

development of large strains without loss of integrity.

In each mode of mechnical action, during constant or variable
temperature, one of these two reasons will be principal, and
precisely this reason will cause the loss in the work capacity
of the polymeric material. With rare exception, every polymeric
material may exist under conditions where fracture will occur
first, and under conditions where softening will occur first,
within a given range of temperatures and rates of mechanical
action, fracture will be preceded by large deformations. The

material will be softened before it breaks.

FTD-HC~23-2119-74 -1 -




When we indicate the fracture of hard solids, it is
understood that fracture is always associated with a loss in the
integrity of the material, e.g. its breaking into pieces. When
we speak of softening, various connotations may be intended.
Characterizing the softening of polymeric sclids, one often
has in mind a particular temperature (or narrow temperature
range) corresponding to the glass point. Above this temperature,
it is found in a solid (glasslike or crystalline) state. This
point of view reflects only cne special case - the softening of
polymers in the absence of mechanical stresses and in a fixed

temperature mode.

During mechanical actions, as well as in different modes of
heating or cooling, the softening point may assume different
values. It was shown above that any temperature, thecretically,
may be the softening point, with the appropriate choice of the
magnitude and duration of stress. However, even this well-known
fact is not the point. The softening of polymeric substance
cannot be characterized by temperature alone, nor even by the
dependence of the softening point on stress. Although such a
dependence gives a more complete picture of the softening of
polvmers, it does not completely acccuant for the time factor.
Meanwhile, time, or the life of the polymeric materials form,
may be physically substantiated as a characteristic of its

softening.

FTD-HC-23-2119-74 -2 -
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In any mode of mechanical and thermal action, the polymer
loses its shape, e.g. is softened, over a given period of time.
Softening, permitted during the rapid development of deformations
occurs spasmodically. In the simplest case, when a uniaxial
stress (for example, stretching) and temperature are constant,

softening is manifest in the inltiation and rapid growth of a

neck. Under these conditions, the process of the neck's initiation

has the same spasmodic character as is manifest during ordinary
continuous stretching. The time elapsed between the mcment the
load is applied and the rapid loss of a sample's original form
(e.g. its softening) depends on the magnitude of the stress. The
larger the stress, the shorter the life of a polymeric material’s
form. Temperature exerts a similar effect. An increase in
temperature with stress remaining constant reduces the time

necessary for the beginning of rapid deformation, and vice versa.

Thus, characterizing the softening of polymers, one should
indicate not the softening point, but of the period of time
before the beginning of softening, when the form of the polymeric
material is still essentially unchanged. In turn, the life of
the material's form depends on temperature and stress. Below, we
will examine such dependences for a number of polymers, and

describe how they were experimentally determined.

In practice, the load-carrying capacity of structures is in

many instances calculated according to the limic¢ of tolerable

FTD-HC-23-2119-74 -3 -




strain. This means that the deformation of material developed

as a result of creep should not exceed a certain magnitude.

During this, no "neck" has yet formed, but the structure's
shape has changed to the extent th-t it may already be non-
functional. However, since creep in hard polymer materials is
nothing more than the development of forced-elastic strain, this
process may also be defined as the softening of material over

time.

The strength of polymers has been characterized for a relatively
long time as the life of a polymeric material, or its durability.
Such a characteristic is usually connected with fracture in the
presence of very small deformations, and may therefore indicate
insubstantial changes in the structure of the material. However,
although maximum deformation is small under conditions of brittle
(or close to brittle) fracture, it always accompanies fracture
processes, and is generated continously during the period of load
action. Thus, questions of strength and fracture should be given

more attention in books devoted to polymer deformation.

In this part of the book, we will discuss the irteraction
between the processes of fracture and softening. Having taken
the time elapsed between the application of the load and fracture

or softening as a characteristic of these processes, it immediately
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becomes necessary to evaluate the ratio of the ratio of the

rates of these processes. If, under given conditions of
mechanical and thermal action, the life of the material is
greater than the durability of its form, then softening will
occur over a certain time interval. If the life of the form
exceeds that of the material, then fracture will begin first.
Obviously, it is also possible to set up conditions where by both
characteristics will be identical. Then fracture and softening

will occur simultaneously.

One important question yet remains concerning the inter-
dependence between the processes of fracture and deformation.
Deformation is generated in the durability testing of olymers
under constant pressure (c = constant). And, although strain may
be small (several percentages) before fracture, the rate of its
development proves to exert a substantial effect on the final
characteristic - durability. A number of studies undertaken in
recent years have attempted to connect the rate of deformation
with the life of the polymeric material. The results of these

studies will be reviewed below.

Finally, studies of local deformations at a site of fracture
in the polymeric material are accorded special significance.

These very unique strains may be fairly large, even though total

— 3
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deformation of the sample as a whole before fracture is in-

substantial.

Let us begin our exposition of modern conceptions of the
mechanical work capacity of polymers with a look at the

phenomenon of mechanical fracture.




Chapter 14

The Mechanical Fracture of Polymers

Physical Concepts

The fracture of solid materials is usually considered as
the most dangerous form of loss of work capacity. This assertion
may be agreed to if brittle or near-brittle fracture is indicated.
It is vitally important in this instance to learn to increase the
strength of the material, so that it may withstand prolonged
periods of heavy loading. When fracture has a non-brittle
(ductile or tough) character, increasing the material's strength
may not give the desired result. As follows from our examination
of tests conducted by Yu. S. Lazurkin, during continuous loading,
the elastic limit corresponds to lower stresses than does ultimate
strength. The potential strength of the material may not be used
on account of the "premature" development inelastic strains. Let

us first of all discuss fracture occurring at low strain.

The first physical theory of strength is usually associated
1 -2
with the name Griffith . According to his concept, the
fracture of hard solids has a critical character, e.g. it occurs

instantaneously after the attainment of a certain critical

(ultimate) stress. According to Griffith, real solids, in

M\Aﬁn‘;




contrast to ideal solids, do not possess a perfect structure,
but instead contain a great number of defects, weakening .he
material. Any imperfections in the crystalline lattice,

microcracks, etc. may be defects.

During the loading of a hard solid in the apices of micro-
cracks, large local overstresses develop; such overstresses
exceed the mean stress in the sample ten or even a hundred times.
When these overstresses zre capable of overcoming reactive
forces between adjacent structural elements (beginning with
individual atoms, and ending with large structural formations)

a crack begins to develop rapidly, and the solid is fractured.
If the load is such that the overstresses are still in no
condition to overcome reactive forces between structurzl elements,

the fracture does not occur, and the solid may survive indefinitely.

Griffith's theory explained well two experimental facts,

characteristic for practically all types of hard solids.

The first fact is the enormous difference between theoretical
and technical strength. If the structure of a hard solid is
known, it theoretical strength may be calculated. Knowing the
dependence of the potential energy of the atoms' interaction on
the distance between them, and considering the number of inter-

atomic bonds per unit of cross~sectional area, one may determine




the magnitude of the force required to overcome the total
interaction. Computing theoretical strength in this manner almost
always yields a value several decimal orders (as a rule, from

one to three) less than the experimental value. According to
Griffith, oversiresses in the apices of v.rious defects are
greater than the mean stress in the sample by just that factor.
Thus, on the whole, theoretical strength is not attained, although

it is reached in the apices of microcracks.

The second fact is the constancy of pressure at which fracture
occurs under usual strength-testing conditions for materials
(determination of tension and compression diagrams). If test
conditions (for example, the rate of stretching) are kept fairly
stable, each solid will display a roughly constant amount of
tensile strength (within the limits of the variability of results,
of course). At first glance, it seems that the stability of the
strength values obtained confirm the critical character of fracture.

Griffith's theory enjoyed much success, and Griffith himself
had many followers who further elaborated his theory. The basic
mathematical relationship in Griffith's theory is based on the law
of the conservation of energy, and its application to concrete
aspects of tests explains many experimental facts. Griffith's

theory, in its original form, is now substantially dated, and

P

even his followers have been forces to consider new experimental
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data conflicting with the theory.

The critical mechanism governing the fracture of hard
solids, and consequences of this mechanism, are being subjected
to review. However, other aspects of Griffith's theory have kept
their value. The substantial role of microdefects, which weaken
the material, the effect of large overstresses, initiating in the
apices of microcracks, ets, were asserted by his theory. These
positive features of the theory are used with success to describe

the macroscopic fracture of hard polymeric solids.

One of the principal assumptions of Griffith's theory - the
critical mechanism of fracture - does not withstand experimental

—-—

verification. At first singly , and then systematically

- 23, tests demonstrated that a hard solid may be fractured not
only under stresses corresponding to critical stresses, but also
under substantially lesser stresses. It is quite unnecessary to
increase stress up to the so-called "ultimate strength" in order

to cause the fracture of polymeric materials. Applying a much
lesser stress, one may always wait for the fracture of the material.

The smaller the load being applied to a hard solid, the greater

the durability, or life of the solid.

The inability of polymers to infinitely withstand mechanical

action which is less than the ultimate strength disproves the
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critical mechanism of the fracture of solids. Even this fact
alone indicates that fracture is not an instantaneous, but a
gradual process, occurring over time. As a result, the
fundamental characteristic of the fracture process proves to be

time - mechanical durability -, not ultimate stress.

Before discussing the nature of the mechanical fracture of
polymers, let us examine some experimental data. The first

3

studies” of the durability (1) of polymeric materials showed

that the dependence of log T on stress at a constant temperature
has a linear character. Later, the gystematic investigations
9 -19 of S. N. Zhurkov and others led to the discovery of
general laws: they are manifest in the unique change in the

durability of polymers within a wide range of temperatures and

mechnical stresses.
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Figure 1.

The dependence of the logarithm of durability
on stress ( ) and on inverse absolute
temperature (b) for viscose fiber.
In Figure V.1, a: 1 - minus 75 °C; 2 - 20; 3 - 80; 4 - 150 °C. 1In

V.1, b: 1 - 60 kgf/mm2; 2 - 40; 3 - 20 kgf/mm2
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In order to obtain the dependence of durability of temperature
and stress, the following procedure is usually employed: with
temperature constant, a load is applied to a sample, inducing a
rigidly constant stress ¢ which is maintained by a special
device. Changing the load, one then records the moment of time T
from the moment the load is applied until the moment of the sample's
fracture. The same experiments are then conducted at other

temperatures.

After completing a series of experiments in the range of
temperature and stress appropriate to each polymer, one may then
construct a graph of the dependence of log T on ¢ and 1/T. As
Zhurkov showed, these dependences are linear for many hard polymers,
appearing as shown in Figure V.1, a, b. It is interesting to note
that they converge at a single point - the pole. The pole's

ordinate is always log Ty, = =(12 - 13) (sec).

The character of the experimental dependence shown in Figure
V.1l a, b allow one to write an equation for the durability of

polymers in the form

Ue—y0
T= Ty¢ RT (v. l)

where T is the durability of the polymer; a_ is the pre-exponential

o)
multiplier; U, and Yy are parameters of the material; ¢ is a

constant stress.

- 12 -
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If we are interested in the dependence of durability on stress

at a single temperature, Eqg. (V.l) is simplified:

=4 (v7.2)

The dependence of log T <n ¢
2% different temperatures

> >
(Tl > TZ T3 T4).

where A and a are parameters of the material.

Pre-exponential multiplier 7, is roughly the same for all

polymers, and is equal to l()-12 - 10-13 sec. This value corresponds
with the period of oscillation of atoms in solids. Parameter UG
coxresponds to the energy of activation of polymers' thermal
degradation and if such occurs with a breaking of the chemical

bonds in the main chain, the value of Us ccrresponds in turn with

the energy of these bonds.

An analysis of experimental data on the durability of polymers,

expressed by means of parameters 1 _ . U, and ¥ and very characteristic

0
values for these parameters, allowed Zhurkov to formulate a concept
of the nature of the process of polymer fracture. This concept

can be more easily explained and understood with the aforesaid

analysis of relazation phenomena in polymers, having much in

common with the process of fracture. The concept of the kinetic

- 13 -




character of the processes is found at the base of both phenomena.

During relaxation, the structure is rearranged as a result

of the overcoming of energy barriers U opposing such a

Y’ o,
rearrangement. In the event of fracture, the breaking up of the

solid into parts occurs with the overcoming of energy barriers

U. opposing the breaking of the chemical bonds in the polymer's

o,
main chain. In both cases, mechanical stress reduces the total
energy barrier and facilitates the completion of the process.

As a result of the energy barrier's lowering (Uo - YU), less heat
energy is needed to attain the same durability. Thus, in the

presence of substantial loads, fracture occurs in the same

amount of time at a lower temperature.

Mechanical stress, therefore, is not the origin of the
fracture of polymeric materials. It only lowers the activation
barrier, facilitating the breaking up of macromolecules. As a
whole, fracture may be pictured in the following manner. Atoms
in the solid oscillate relative to their equilibrium positions
with a frequency of 1012 - 10-13 sec"l. The interatomic bonds
are broken by heat fluctuations. Having determined the
probability of the bonds' breakage in the usual way as
W = Woe U/RT, let us assume that U = Uy - y9. This means that

the probability of the bonds' breakage depends not only on

temperature, but also on mechanical stress. Th bonds between

- 14 -
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the atoms are gradually broken, while mechanical stress increases
the rate of this process. The accumulation of elementary fracture
events (the breaking of more and more bonds) leads over time to

the complete fracture of the solid.

If mechanical action is reduced, the rate of the bonds'
breakage decreases, and at ¢ = 0 appraches the rate of polymers'
thermal degradation. Thus, the value of Uo is approximately
equal to the activation energy of the thermal degradation process.
Furthermore, it may be stated that the durability of the material
as a whole is inversely proporticnal to the probability cf the
breakage of chemical (or other) bonds, and then we immediately

arrive at Eq. (V.1l).

Postponing discussion of other aspects of the problem of
strength for the moment, let us examine the relationship between
two characteristics of the fracture mechanism - time (durability)
and stress (ultimate strength). For this purpose, we turn to
Figure. V.2, which shows the dependence of log T on ¢ at

different temperatures.

gt

e - .S‘ 1
Jis uf,:vlz'- §,|1 .i'l;!

o
Figure V.2 Caption
on page 16.
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The dependence of log T on ¢
at different temperatures

(T1> Ty> T3> T,).

Increasing the temperature, the straight line log 1 = £ (0)
becomes more and more vertical, and then within a very small range

of stress, durability T assuming then that if the applied

PY,
stress is less than GDY the material as a whole may survive
’
indefinitely; if the applied stress is greater than o the

PY.
material will undergo almost instantanecus fracture.

At higher temperatures, the temperature-time dependence
of strength ir. such that a broad range of stresses will be
required for substantial changes in the durability of the material.
All of this demonstrates the conditional nature of the concept
"ultimate strength.” Although such a concept may be useful in
comparing different materials, it loses its value when the issue

is the physical nature of fracture.

Eg. (V.1l) reflects the experimental fact testifying to the
gradual occurrence of the fracture process. This process,

proceeding over time is caused by the formation of free macro-

radicals24 - 26, 117. Their concentration is increased in time,

similar to the manner of deformation growth in a polymer during
creep. It may be stated that, since the polymer sample is

still far from fracture, creep is accompanied by the formation

- 16 -
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and accumulation of free radicals. The dependence of the

logarithm of the rate of radical formation on mechanical

stress (Figure. V. 3) has the same linear character as the

dependence of log T on o. The above pnenomenon was studied for

hard linear polymers.

]

(I B
40 30 60 70

2
v, A{_C/ﬂﬁ 0‘ 4 5 )

Figure V.3.

The dependence of concentration U
and rate of radical formation
du/dt on stress for caprone
(polycaprolactam resin).

During the loading of three-dimensional polymers, free

radicals are formed mainly as a result of the breakage of cross-

links. This phenomenon, accompanied by the process of chemical

flow, is observed not only under heavy mechanical action

27 - 33

but under milder conditions as well.

Relating the process

of polymers' fracture with mechano-

chemical phenomena, one may pose an interesting question for

- 17 -




investigation. In studying the mechanism of the thermal
degradation of a polymer, one usually tries to find the weakest
bonds, which break first and limit the polymer's resistance to
heat. Naturally, the substitution of these bonds by stronger
bonds (e.g. a directed change in the chemical structure of the
polymer) will increase the polymer's thermal stability. If the
concept of the heat-fluctuating nature of fracture is valid, then
such a substitution may increase not only the theimal stability,
but also the strength of the pclymer. Thus, it is very
important to detect the weak bonds in the polymer26 , which will
also be responsible for the strength (more precisely, for the

"weakness") of a plymeric material.

The search for the weaker bonds in « polymer may best be
conducted not only on the molecular level (by determining which
chemical bonds are the first to break); it is also vital to know
the weak places in the polymer's super-molecular structure,
because t the fracture mechanism will also be generated at these

sites.

In an oriented crystalline polymer (for example, a fiber)
crystalline and amorphous regions alternate along the orientation
axis. Such analternation is characteristic for many (but not all)
polymeric fibers. The fibrils in the amorphous region are the

first to be deformed upon the application of a mechanical load to

18
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. 3
this unique "structure." 4

It is highly probable that the rate of occurrence of
elementary fracture events (the breaking of chemical bonds) will
be greatest in precisely these areas, so that the amorphous regions
"shape" the strength properties of the fiber as a whole. 1In
connection with this, it is necessary to know the structure of the
amorphous regions in a cyrstalline polymer. It is worth noting
that the degree of orientation in precisely these regions, and
not in the crystalline regions, is closely allied with the strength

properties of several fibers.35

The presence of amorphous regions in any crystalline polymer
may be practically regarded as the presen ce of unique defects in
a hard solid. Elimination of the amorphous regions, as with all
other structural defects, leads to a sharp increase in strength.
By applying unique methods of obtaining perfect crystalline solids
without fefects, one may demonstrate conclusively the adverse

effect of amorphous regions on strength properties.

One of these methods is the formulation of polymers via
polymerization of monomer crystals in the solid phase. For example,
36, 118, the polymerization of trioxane, taken in the form of
crystals, leads to the formulation of spicular crystalline

formations of polyoxymethylene, devoid of any would~be defects

19
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in the crystalline lattic. Strength increases as a result, and

ultimate tensile strength may reach 3006 kgf/mmz.

It should be kept in mind that amorphous regions in a
crystalline polymer play not only a negative, but a positive role.
By weakening a polymeric solid and facilitating a decrease in its
strength, these regions help reveal the elastic properties of the
polymer. Without them, the polymeric material proves strong, but
very brittle - this would be extremely undesirable. Thus, control
of the structure of a crystalline polymer should be exercicca with
reason, in accordance with the demands being made of a given

material.

If great strength is required of a material, and its brittle-
ness is not specially stipulated, the presence of amorphous regions
should be avoided. If the material should be elastic, and withstand
repeated flexure and other forms of periodically variable strain,
the presence of amorphous regions is advantageous (and sometimes

necessary) even in a strongly oriented polymer.*
Returning to the molecular mechar.ism of fracture, let us note

that the process of thermal degradation is not limited to the

breaking of macromolecules intc large fragments. Monomers may be

*Recall that oriented polymers are the least brittle of all
polymeric systems.

20




set free during the breaking of chemical bonds in the main chain.

Volatile products are also liberated in the thermal degradation

process as a result of the detachment of side groups. When a

polymer is loaded with a mechanical force, degradation begins with
37 - 39

the breaking of chemical bonds in the main chain ., So that

the volatile products are monomers.

For several poiymers (polymethy methacrylate, polystyrene,
polypropylene) the products of pure thermal and mechanical degradation
coincide39. For other polym=rs (polyvinyl chloride, polyacryloni-
trile), these products are different, since thermal degradation occurs
intially with the detachment of side groups, and mechanical

degradation is accompanied by the rupture of bonds in the main chain.

These experimental facts confirm the validity of S. N. Zhurkov's
conception of the kinetic character of the fracture of polymers,

closely allied with degradation processes.

The complexity of the processes of thermal and mechanical
degradation causes several deviations from the temperature-time
function of xx strength, expressed by means of Eq. (V.l). This
equation is valid at stable values for parameters U, and y and is
indeed satisfied for a large number of polymers. It should be kept
in mind, however, that it may be used cnly within a range of

temperatures and stresses defined for each polymer; to extend its




use further would be risky. Thus, in the region of small stresses,
experimental durability is always greater than that predicted by

E. (v.1l).

The main reason for deviations from Eq. (V.1l) is the
' possible change in parameters during the experiment. This applies
especially to structure-sensitive parameter y. If orientation,
crystallization and other changes in structure occur during the

experiment, parameter y is changed, and the conditions necessary
40 - 43

for satisfying Eq. (V.l) are violated.

The character of thermal degradation proves to have a
singular effect on the temperature-time function of strength. If
the formation of secondary radicals initiates the degradation

process, function (V.1l) is complicated, and takes the form

- 1 ‘
‘U.R = —1"——7,_.') (V. 3)

The dependence of
- concentration U and
rate of radical
formation du/dt on
stress for caprone
' (polycaprolactam
' resin).

" where Tp is the temperature of the pole; the remaining parameters

have the same meaning as in Eq. (V.l).

22
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Relation (V.3), as (V. ), describes the set of straight lines
in coordinates log T'; 1/T coming out of a pole located not on the
ordinate axis, but somewhat to its right (Fig. V.4). The point of

the pole corresponds to temperature T The introduction of an

p.
inhibitor into the polymer, supressing secondary radical reaction,
shifts the pole leftward to its normal position.44 These facts

leave no doubt as to the close connection between the processes of

fracture and thermal degradation.

} 2 3 4 &

1097, epad™’
/ 'g'g‘z_(.}ud)

Figure V.4
The dependence of the logarith
of durability on inverse
absolute temperature for
polystyrene at a stress o:
1-11 kgf/mgz; 2-8; 3
3 - 5 kgf/mm<.
Thermal, and in particular thermal-oxidative degradation, may

exert a substantial effect on durability characteristics. In the

absence of mechanical stress, both forms of degradation ultimately
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cause the fracture of the material. Thus, Egs. (V.1l) and (V.3)
do not lose their physical meaning at ¢ = 0, as it may seem at first
glance. These equations predict the ultimate durability of polymeric

materials in the absence of mechanical loading.

Thermal-oxidative degradation also proves to have an effect on

character of the temperature-time dependence of strength. 45, 46

The
dependence of log T on o deviates from the linear and has a very
complex S-shaped character (Fig. V.5). In the simpler cases, under
the influence of a single external factor (ultraviolet radiation,
gamma radiation, etc.), the character of the temperature-time
dependence of strength remains unchanged47 - 50, with only the
parameters of the Zhurkov equation being altered. Under heavy :
loading, radiation has little effect on durability; under small
loads, it has a very substantial effect, while the coincident effect
of mechanical stress and radiation proves to be greater than the
effect produced by their alternating action. An aggressive medium
also exerts a unique effect on the durability of polymers.
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The dependence of log T
on ¢ for polyethylene
at temperature:

1 - 11 kgf/mm2; 2 - 8;
3 - 5 kgf/mm2,

Up until now, we have examined the temperature-time dependence
of strength for hard (amorphous and crystalline) solids. A tempera-
ture-time dependence of strength is also characteristic of polymers
in a high-elastic rubberlike state. The life of these polymers is
determined by the magnitude of the applied stress and temperature.
The fracture of elastomers may occur under loads substantially
smaller than "ultimate strength."” However, the temperature-time
dependence of strength for elastomers, as a rule, is somewhat
different from the similar dependence (V.1l) for hard polymeric
solids. The durability function for (cured) rubber, according to

53 -~ 57
the work of G. M. Barteneu , is described by the following

relation:

1= Ao—meY/RT (v.4)

where T is the durability; A and m are parameters of the material.

The remaining symbols have the same meanding as in Eq. (V.1l).

If test are conducted at a single temperature, Eq. (V.4) is

simplified, and takes the form

TR .
<%= Bo~"

where B and n are parameters of the material. :

e NG
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The experiment shows that experimental data for pure rubber are
described well by Eq. (V.4), although they are satisfied with the
same approximation by Eq. (V.2). The dependence for pure rubbers5
is described better by Eq. (V.2). Transitions to other temperature
regions also changes the character of the temperature-time dependence
of strength. Even within the limits of the high-elastic state, one
may distinguish temperature ranges in which durability is described

by relation (V.l) or relation (V.4).

It follows from Eq. (V.4) that the activation energy for the
fracture process is independent of stress. On the other hand, Eq.
(V.1) shows that such a dependence exists, while for hard polymers
the activation energy decreases with increasing stress. For

57

elastomers~’, one observes the reverse: the activation energy

increases with an increase in the load. This phenomenon is easily

observed with thermosetting polymers58

, which may be changed from

the solid state into the high—~elastic state for the convenient study '
of temperature raages. In a glasslike condition, the durability of

these polymers is described well by Zhurkov's equation with a

"normal" (positive) coefficient y. This equation is also valid

for the high-elastic state, although here the value of y is negative.

Thus, activation energy increases with increasing load, and

dur. 0ility increases along with it.

This experimental fact, interesting by itself (durability being

greater for loaded material than for unstressed), is explained by

26




the fact that in the high-elastic state, intzrmolecular bonds play a

large role. They take orn part of the load, releasing the chemical

bonds from work. Under small loads, the rate of the fracture process

is slow, and the intermolecular bonds, assuming the load, facilitaée

a more uniform distribution of the stress. Hence the characteristic
. form of graphs of the temperature-time dependence of strength for

thermosetting polymers (Fig. V.6).

Figure V.6.

The dependence of log T on o for
melamine-formaldehyde films with-
in a wide range of temperatures:
1 - minus 23 °C; 2 - 0; 2 - 20;

4 - 30; 5 - 50;

6 - 60; 7 - 70 °c.

In the low-temperature region (glasslike condition) the graphs
have the .normal form, following Eq. (V.1l). In the region of high
temperatures (high-elastic state), the slope of the graphs testifies

to the increcase in the value of U with increasing stress. In the
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intermediate (transition) region, activation energy is independent
of stress. In general, the durability of elastomers may be
described with more complex relations>? than Egs. (V.1l) and

(v.4).

The dependence of durability on stress and temperature
invariably appears in the form of exponential functions when the
activation process of the rupture of interatomic bonds is assumed
to be the basis of the fracture mechanism. Here, concrete instances
of the appearance of such a mechanism may be approached in several
ways. For example, in the 1940's, Tabolsky and Eyring60 explained
the dependence of durability on stress and temperature starting
from the mechanism activating the breaking of interatomic bonds.
Assuming that the life of the material is determined by the rate

of the bonds' rupture, they proceeded to the relation

AF—a) . (v.6)
_ —’A A'o kT .
= ]
where A is a parameter; N, - the original number of bonds; AF - the

activation barrier which must be overcome to break a single bond;
A ~ the deformation of the bonds during rupture; k - Boltzmann's

constant.

The fracture mechanism is treated somewhat differently in the

61

works of Bueche and his followers®2: 63, They also hold that

28

| e




"

chemical bonds are broken under load, with the load lowering the
activation barrier. Since the number of unbroken bonds decreases with
time, Bueche introduced a second assumption on the uninterrupted
increase in the load discernable with these bonds. Describing the
probability of the bonds' rupture in the usual manner, Bueche

derived the following equation for durability:

L)
—

L Ueg—2.78:0 (v.7)
¢ K7

1’=-l—

a «

where w is the natural frequency of the bond's oscillations; 6§ - the
deformation of the bonds during rupture; S - the cross-sectional

area per bond.

Bueche's theory was later refined, and although it does not
always agree with experimental data, it may be used, for example,

to describe the fracture of pure and impure (filled) rubbers.sz' 63

Up until now we have looked at the fracture mechanism only as it
is related to the heat-fluctuating rupture of chemical bonds. But
a large role is played in polymers by intermolecular interaction
caused by the presence of bonds of a physical nature (van der Waals
forces, bonds between polar groups, hydrogen bonds). According to
64 - 66

V. E. Gul , the inclusion of these bonds in the work has a

substantial effect on the whole process of fracture. The basic
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premise elaborated in Gul's work is that the loading of a polymeric

solid first causes the rupture of intermolecular bonds. The load
on the chemical bonds is increased according to the accumulation of

these initial ruptures.

By introducing the probability of the rupture of intermolecular
bonds and their proportional load on the chemical bonds, and by
examining the rate of crack propagation in a polymeric solid, Gul

derives the following relation for durability:

__8 m (v.8)

- (0—o.)*

where B, Oy r a,Y’B are material constants.

Somewhat earlier, Gul64 found a relation connecting load at

rupture GY with the rate of deformation v:

— A expWIRT)
"LTr)A" exp (V.9)

where A, n and U are material constants.

Relation (V.9) was later the basis for calculating the

strength of composite materials. All of these studies are

65 66

generalized on a survey and monograph .
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Original approaches to the description of the fracture process
have beeﬁ suggested by A. A. Ulyushin and P. M. Ogibalovsa, as well

as A. I. Gubanov and A. D. Chevychelov69 - 71. Thus, in a series

of works®? — 71

 Gubanov and A. D. Chevychelov examined a theoreti-
cal dependence of durability on stress and temperature for several
polymers which has the form of Zhurkov's formula. Their theory
allows one to compute the coefficients in the durability equation

beforehand, and to predict the path of creep curves.

The Kinetics of Crack Propagation in a Hard Solid
The systematic investigations of S. N. Zhurokov and his
collaborators, as well as the work of a number of other authors, .
leaves no doubt as to the heat-fluctuating nature of the fracture
of polymeric solids. The fracture process consists of the
gradual rupture of interatomic bonds as a result of heat fluc-
tuations, while mechanical stress reduces the ac_ivation barrier

and hastens the completion of the process. :

Elementary fracture events in an actual polymeric solid take
place more rapidly at the sites of greatest stress. These sites
are essentially the same as any imperfection in the structure of
a hard solid. For example, stress concentration occurring in the
peaks of microcracks exceeds the mean stress in the samply by i

10, and sometimes 100 times. It is clear that the interatomic
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bonds at these sites will be ruptured most rapidly. And although
the fracture process has not progressed too far in the rest of
the sample, it has been completed at the site of the most
dangerous defect. As a result, the sample's durability is ex-

hausted and it is broken into two sections.

If the whole sections of the sample remaining after fracture
are tested again to fracture, the ultimate stress at fracture may
sometimes differ little from the original value. This expimental
fact seems to conclusively disprove the statement that the fracture
process has a heat-fluctuating character and is generated through-
out the entire sample. However, it is easily demonstrated that a

defective hard solid should behave in precisely this manner.

The fact is that the dependence of durability on stress has
an exponential character /see Eq. (V.2)/. Therefore, if the
apices of the microcracks are under a load which is substantially
larger than that acting on the rest of the sample, tne rate of
the rupture of bonds in the apices will increase catastrophically.
Conversely, with relatively light loading of the parts of the
sample free of defects, the rate of the bonds' rupture will be
negligible. 1In these parts, the number of bonds having broken
between the moment of the load's application and the moment of

fracture will be insignificant.
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The exponential dependence of durability on stress also points
out the fact that even in other, less dangerous defects, stress
will not cause any notable rupture of interatomic bonds. Onliy
maximum stresses play a decisive role in determining durability,
all other stresses being negligible. All of this leads to the

. concurrence of the results of initial and repeat tests.

It is interesting that if one takes material free of defects
(more exactly, almost free of defects), specially prepared fiber
glass for example72, then it will be converted to powder upon
fracture. Here, elementary fracture events are indeed generated
throughout the entire sample. Thus, the macroscopic fracture of

the sample occurs at all of its points simultaneously.

The concentration of stress in the peaks of microcracks and
the abrupt acceleration of the rupture of bonds at these sites
demands that attention be given the study of the fracture

mechanism generated by the initiation and propgation of cracks.

In Griffith's works73' 74, there was an attempt to establish
a mathematical dependence between the strength of a hard solid
and the character of cracks. In particular, for a sample with
a rim crack of length l,, critical stress oy is calculated
according to the formula

weV/EE (v.10)

!(I.
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where E is the modulus of elasticity; a, is the potential surface

energy.

Griffith's followers repeatedly proved relation (V.10)

experimentally. For many polymer575 - 78

, ultimate tensile
strength is actually proportional to 1//16. In other cases79,
deviations are observed, especially in the temperature dependence

of the proportionality coefficient between o, and 1//1,

The deviations compel consideration of the different losses
arising during the initiation and propagation of cracks72’ 80 - 82.
At least three forms of mechanical loss may be indicated72:
strain losses arising from irreversible deformations in the apices
of microcracks; dynamic losses accompanying the conversion of
elastic strain energy into kinetic energh during the separation
of the walls of a microcrack; losses during the degradation of

elastic strain energy at the moment of the rupture of inter-

atomic bonds in the microcracks' apices.

In describing :the fracture process, one should consider all
thr-e forms of loss; only strain losses may be ignored, in the

case of an ideally brittle solid.
The presence of microcracks in an actual hard solid does

not alter the basis of the conception of the fluctuating rupture

of interatomic bonds' and the gradual accumulation of elementary
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fracture events. However, the peculiar pattern of the initia-
tion and propagation of cracks in polymers obliges us to look

for different ways of describing the process.

"Silvering"” of a material or, as is sometimes said, the
appearance of "milk" is often observed during the fracture
of polymers. These phenomena are connected with the initiation
and propagation "silver cracks," differing structually from
ordinary fatigue cracks.83- 38 The walls of silver cracks are
connected to very fine strands of oriented polymeric material.

These strands facilitate a more uniform distribution of stress

in the material.

Silver cracks grow at an almost constant rate from the

surface to the center of the materialag’ 90

. As a result of

the successive rupture of strands, silver cracks are transformed
into ordinary cracks, the walls of which are not connected to
the strands. The growth of these cracks also leads eventually

to the complete fracture of the solid.

In evaluating the strength of glassy polymers, it should be
kept in mind that the glasslike state itself is in the first
approximation subdivided into brittle and non-brittle substates.
(see Chap. 15). At low temperatures, fracture has a brittle

character and is almost completely determined by the propagation
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of ordinary stress cracks. In the non-brittle forced-elastic

region, silver cracks predominate.

The durab ility of the polymeric material will be ex-
hausted only after silver cracks have spread over a large
portion of the sample (this will be adequate for the beginning
of the rapid propagation of macroscopic fatigue cracks). This
leads to the characteristic configuration of the fracture
surface; it consists of two areas, rough and shiny.gl' 92

should be noted that ordinary cracks are propagated much faster

than silver cracks.

The development of two types of cracks in the material leads
to the division of the fracture process into at least two
(sometimes into three) stages. In oriented polymeric fibers, the
application of a load is followed by a "drawing" of the fiber,
e.g. a change in structure. This process is later slowed, and
cracks appear in the second stage. In the final stage, the
cracks are rapidly propagated throughout the entire sample.
Naturally, the largest role in determining the durability of
material belongs to the second, and longest stage of the

fracture process.

The heat-fluctuating mechanism of the rupture of structural

units in the apices of microcracks, as a rule, is the basis of

the theory of polymer strength. This phenomenon is discussed
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differently by a number of authors. In one set of cases?3 — 95,
brittle destruction is regarded as the result of the propagation
of cracks to the so-called critical dimension, while otherszz' 23,

consider the slippage of polymer chains relative to each other.

The theory of the temperature-time dependence of strength

7
! offers a

elaborated by G. M. Bartenev and his collaborator59
detailed relation for the durability f polymeric materials.

This theory, based on the heat-fluctuating mechanism of the rupture
of interatomic bonds in the apices of microcracks, is founded

on the following premises. The bonds between atoms may be ruptured
and restored, but if at a given stress there is equal likelihood
of rupture and restoration of the bonds, then the crack will not
grow. The theory also introduces the concpet of a safe stress U,
below which this condition is observed, and above which the

probab ility of the bonds' rupture exceeds the probability of their

reestablishment.

By determining the probability of the above process in the
usual manner and by considering that the rate of crack propagation
is proportional to the probability of the bonds' rupture, one
may derive a relation for durability in which material parameters
accounting for the scale factor are included.* (*Accounting for
the scale factor means that one takes into consideration the form
of the sample, its dimensions, the dimensions of initial cracks,

etc.)
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For circular rods in the case of brittle fracture, Bartenev's

equation for durability takes the form

Us—upo
__aRT TR R (v.11)
= Aveopoy®

where r is the radius of the rod; o and T are constant stress and
temperature; A is the average distance between adjacent broken
polymer chains in the path of the crack's propagation; v, is the
frequency of thermal oscillations of the atoms in the polymer
chain; w is the fluctuating volumne in which the elementary
fracture event (the rupture of bonds or bond groups) occurs; B is
the coefficient of stress concentration at the tip of the propa-
gating crack; x s the scale factor (1 - so/s)’l, where s_ is the
initial sectional area of the most dangerious microcrack; "a" is

a constant accounting for the dependence of activation energy on

temperature.

Constants U, and wB = y are similar to the corresponding
constants in Egq. (V.1l). The structure-sensitive parameter y
is the volumne in which the elementary fracture event occurs,

multiplied by the coefficient of stress concentration.
If fracture occurs as a result of the propagation of silver

cracks, e.g. in a non~brittle manner, the life of the polymer is

determined by the durability of the strands and is described by
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the simpler relation

-® R (v.12)

Parameters A\~ w” and 8 have the same meaning as in Eq. (V.1ll) but

have different values.

In the region of non-brittle fracture, relaxation processes
become guite important; their calculation allos a more precise
description of the durability of polymers in this temperature
region. The transition from the temperature region where nearly
ideal bhrittle fracture occurs to the region in which fracture is
non-brittle changes100 = 102 the character of the dependence cf
log T on 0. Two clusters of straight lines, each having a

different slope, are formed instead of one such cluster102

, and
the correlation of these experimental data leads to two different
values for the activation energy and parameter y = wB.

In a theory developed by Barenblatt and associates103 for the
kinetics of crack propagation in a hard solid, the adhesive force
acting in the annular region of the surface of cracks is assumed
to be time-dependent, even under constant load. The adhesive
forces are transmitted by structural elements (s~rands) connected

to the walls of the propagating crack. If it is assumed that

the rate of the change in the density of these load-carrying
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elements is described by an equation similar to a first-order

reaction equation.

dn_ _ __kn (v.13)
dt
where n is the density of the load-carrying elements, equal to
the ratio of the number of these elements in an infinitely small
area to the total area; t is the time; k is the transfer rate
then one may derive all of the basic relations for long-term

strength.

Equation (V.13) is the basis for describing the kinetics of
crack propagation and the fracture of a polymeric solid as a
whole. Such an apporach 03 permits the formulation of the
conditions of brittle fracture, the examination of several
questions concerning long-term strength, and the substantiation

of criteria of fracture under variable load.

Fracture cccurs in an actual polymeric material as a result
of the propagation of cracks, with considerable stress con-
centrated at the tips of such cracks. The material is fractured
first at these most dangerous sites. However, a check of the
stress concentration again leads to the usual temperature-time
dependence of strength. THis is not surprising, since kinetic

conceptions of the gradual heat-fluctuating rupture of bonds

ho
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between atoms or larger structural particles are the basis of
both the purely molecular mechanism and the mechanism connected

with crack initiation and propagation in an actual hard solid.

The equation given by Barenblatt and his collaborators for th

durab ity of polymeric materials appears thus:

U.—?"’
U=y
i (v.14)
where
- 3Me=CBry. - %% DB, I V. 15) -~ V.15
w=FaTo VoW T wes 0o 97 (v.13)

Here 1, is the initial dimension of the crack at t - 0; C is

Euler's constant (C = 0.577 . . .); B is the coefficient characteri-
zing the bond's tensile growth rate with its elongation v; T, is

the oscillation period of atoms in a hard solid; ¢ is the length

of the end region; D is a constant; ¥V is a meterial constant;

G, is a material constant equal to the characteristic tension of

an individual bond; n, is the number of bonds per unit surface

area of cracks outside the end region.
Comparing relations (V.14) and (V.15) with Zhurkov's

equation, it may be stated that quanity y, has the meaning of

parameter y in Zhurkov's equation in cases where the hard solid
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is free of defects and the load is distributed evenly over all

bonds (a purely molecular fracture mechanism). The factor

2, D+s

X
6 4D+ B8

has the meanding of the particular coefficient of stress

concentration.

An experimental investigation of the propagation rate of

d 119 that most of the

main cracks in a number of polymers showe
(durability of a sample t under load is consumed by the propaga-
tion of precisely these visible cracks, not by the 1 initiation
of nucleated cracks. In any mode of loading, their propagation
increases exponentially with increasing stress, which is in

complete accord with the basic equation of the temperature-time

dependence of strength.

The above-examined theoretical and experimental studies
pertain, as a rule, to uniaxial tension. Efforts have been made

to consider a complex stress condition.20 = 123

The Durability of Polymers under

Variable Load and Temperature

In examining the physical nature of polymers' strength to

find the parameters of the temperature-time dependence of

h2
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strength, experiments are conducted under static conditions,
holding stress and temperature rigidly constant. Constant
temperature and stress are more the exception than the rule,
however, under the conditions of the polymers' practical use. Any
material is almost always subjected to variable temperature and
load during its work in constructions. It is vital that one
deternine the durability of polymers under complex conditions

of mechanical and thermal action. It may be sssumed that if a
sample's durability is gradually exhausted by a constant load,
cyclic loading (with rests) will have the same effect. It is very
important to know if the rest periods affect the ultimate durability

of the sample, and if so, how.

Many observations show that imperfections in the material are
not mended in the relaxation period. This is easily confirmed.
Let us place side by side two identical samples of polymeric
material and load them with an uninterrupted constant load P.

This load should not be so great as to cause the material's
immediate fracture. Over a certain period of time Vi,- let us
take the load from the second sample and allow it to rest for a'
period of time Vt,- with VTo not differing substantially from
V1,. We will then again load this sample with the same force

and await the fracture of both samples.

If all of the experimental conditions and the structures of

the samples are exactly identical, the first sample will fracture
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before the secoﬁd one, and the difference in their durability wil
amount to Vr,  The total time that the two samples will have been
under load before fracture will be the same. This means that the
second sample "remembered" the period of time it was under load,

*
and that none of the imperfections were mended in the rest period.

This simplest of tests testifies to the observance of the
principle of “the summing of imperfections." The principle says
that imperfections occurring in a sample as the result of loads
are irreversible, e.g. they do not dissappear during a rest period.
This also confirms the heat-fluctuating nature of the fractur=z
process, in the course of which elementary events of interatomic
bond rupture gradually occur. The number of broken bonds accumulates
over time, leading as a result to the macroscopic fracture of a

polymeric solid.

The congruence of the durability of samples under unainterrupted
or cyclic loading implies the following mathematically. Let the
durability of a sample under a certain constant stress be equal to
T. Let us assume that this stress acted for a period of time VTlI
while Vr; <t. Having removed the load, we allow the sample to
rest. It is quite obvious that the relative "aging" of the sample
will be Vtj/t. Let us again load the sample with the same force
and maintain that load for period of time VT2. After the repeated

mechanical action, the sample's relative "aging" will amount to

hy




Vri/t + V1p/t. Let us continue the complete fracture of the sample
after its loading for period V1,,. At the moment of fracture, th

relative "aging" will be

Since ﬁ--%&—:--.._:-&:] (V-]-G)
NOCKOIbLKY T T T
n
N Al,=1

We can now look at a load changing constantly over time. We
begin in this instance as usual. Let us distinguish an infinitely
small time inteval dt and consider that within this time interval
stress is constant and equal to an instantaneous value o(t). Then
we substitute Vtrj for dt, and the summation changes to integration,

Relation (V.1l6) takes the form

1 (V.17)

[t~
01[°UH

where 71y is the time from the moment the load is applied to the
fracture of a polymeric solid; T éﬁ(rl? is durability during

constant stress, equai to instantaneous value o (T1).

In order to determine the durability of a poiymeric material
under variable load, it is necessary to first substitute the
dependence of stress on time o (1) in any of the relations (V.1l),
(v.8), (V.1l1l), etc. and then determine the fixed interval (V.17).
The upper limit of this interval will also give the sought-after

value for durability ander variable load. Relation (V.17) was
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104
first introduced by Bailey and was named Bailey's criterion.

Bailey's criterion is based on two assumptions. The first is
the irreversibility of the fracture process, already mentioned
above. The second is the independence of the rate of fracture on
the previous mechanical history of a material. Both of these
assumptions are not always valid, If the rate of the change in
stress is insubstantial, the stress period is approximately equal
to the rest period, and the structure of the polymer is unchanged

105 - 109
under load, Bailey's criterion is completely satisfied.

When thesc conditions are not observed, the calculated values
for durability Ty deviate from experimental values, For example,
during cyclic loading with a large number of cycles, intensive
initial heating of the material occurs, and the temperature in-
creases and differs substantially from the initial temperature.
Naturally, by substituting the initial temperature in (V.17), we

) 109, 110
will obtain an overstated value for durability.

There may be other reasons for the discrepancies (a change in
the structure cof the material by mechanical action, local heating).
These deviations do not by any means signify the basic principle -
the irreversibility of the fracture process, leading to the
gradual accumulation of imperfections in the material - is not
observed. The divergence between calculated and experimental
values of durability means only that there are other parameters

of Egs. (V.l), (V.8), (V.1l) etc., apart from stress. As a
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result, the actual experimental conditions as well as the structure
of the material (e.g.) temperature, structure-sensitive parameter
y) differ from the initial conditions according to which calcula-~

tions by means of Bailey's criterion were performed.

In order to account for these changes, Bailey's criterion must

be written as follows:

_r)
'8 a ‘ (V.18)
j OOl

0

where 1/0(t), T(1) v(t)7 is the durability at constant stress,
temperature and structure-sensitive parameter y, respectively equal

to instantaneous value o(t), T(t) and y(T1).

Calculation of the changes in all of these quantities over
time is complicated in itself, not to mention the fact that
solving Eq. (V.18) also becomes more complex. Generally, the
"life" of a material is less with variable values foro, T and ¥y
than for equivalent constant values. Thus, imperfections in the
material are not mended, but are accumulated, e.g. the principle
of the irreversibility of the fracture process is completely

satisfied.

Having eliminated local overheating or changes in the
structure of a material, one may approach complete agreement

110
between experimental and rated durability , calculated by
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means of Eq. (V.18). It follows from this equation that under
any conditions of mechanical and thermal action, durability is
a function of the parameters of stress, temperature and

structure of a hard solid.,

One may arrive at the same durability by different paths. For
example, one may at first assign a small load which, even acting
over a prolonged period, does not consume much of the material's

durability. The load may then be increased, and durability will

be expended much more rapidly. Sometimes the converse is

necessary: the material is subjected to active loading, and
subsequently to weaker loading., Here, most of the durability
will be expended early, but the result will be the same:
fracture will occur at the moment when the relative exhaustion

of Qurability {(relative "aging") equals unity.

It should always be remembered that the dependence of dura-

bility on stress and temperature has an exponential character,

so that the existence of the material a very short time under

a heavy load will lead to the same depletion of durability as

the material's maintenance under a small load for a lcng time.

The reliability of the operation cf various devices is often
tested in practice by the creation of large loads, If overloads

are endured, it is obvious that the device will function under

small loads. But it is also clear that by assigning large loads,

8
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we are substantially reducing total durability.

Adherence to Bailey's criterion makes possible yet one more
conclusion, important from a practical viewpoint. Testing a given
part under periodic loads, we think that the unit should be shut
off from time to time, thus giving it a "rest." It seems to us
that this procedure prolongs the life of the part's operation.
However, the total durability of a material under periodic load
remains the same, regardless of whether it is rested or not.
Moreover, if the rest period substantially exceeds the period of
loading, total durab ility will be less, not greater, than under

uninterrupted load.

This conclusion, paradoxical at first glance, is confirmed
43, 111

by numerous experiments + while the difference in durability
is expressed in several decimal orders. How does one explain this

43, 111
astonishing phenomena? The authors who first observed it

explained the sharp reduction in durability by the change over
time in structure-sensitive parameter y in Zhurkov's equation, as

well as by relaxation processes.

It may be assumed that under load, the sample's structure
changes somewhat (owing to drawing and orientation), as if it
were adapting to new conditions. These changes are such that they
facilitate the survival of the material in a loaded condition

(redistribution of stresses in the most dangerous places,

1!9




orientation in amorphous regions of semi-crystalline polymers,
etc.). By adapting to the load, the material accepts it more

easily.
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Figure 7.
The devendence of durabi-
lity on stress for high-
density polyethylene under
constant load (1) and
cyclic loading (2). Time
under load is 20 min, period
of rest is 10 min.

If the load is removed and the material is rested, the
material's structure will return to its original condition
(typical relaxation vrocess). With short rests, the rebuilding
of the structure does not proceed too far, and a ter repeated
loading it will correspond in a very short time to the structure
at the moment of the load's remcval. During long rests, the re-

arrangement will cause additional irreversible changes in

material. Total durahbility is reduced as a result.

These gquestions, interesting and important from all viewpoints
are found in the beginning stage of study, while the results often

prove contradictory. High-density polyethylene is characterizedlz.4

Y



by an increase in durability under continuous loading under
conditions where o = constant). It is understood that during

such a comparison only the time under load is considered. Thus

the question of the effect of rest on the durability of pclymers is
still open, and only further systematic compilation of experimenta
data will allow us to make an& final conclusions. It is possible
that the "mending" of cracks in the polymeric material occurs

125
during the relaxation process, the more so as studies of recent

years have made it possible to sub stantiate such an assertion.

. 112
I. V. Pazumovskaya has made a thorough analysis of the

conditionsunder which Bailey's criterion is or is not satisfied.

w

With variable loading, Bailey's criterion generally exceeds

unity and is written in the form

Wff/&)
i d .y (V.19)

‘T [0’ (t)] 2

o

where I is an extremely complex function, dependent on the dimen-
sions of the sample, the length of the initial crack and the rate

of changes in stress with time do/dt.
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Figure- 8.

The dependence of durability o
on stress for polymethyl
methacrylate: o - durability
at o = constant; A - dura-
bility under cyclic loading;

o0 ~ durability computed by
means of Bailey's criterion.

Under static loads (dg/dt = O), Bailey's criterion is strictly

observed. If dg/dt ¢ O, Bailey's criterion may exceed unity.
small rates of load changes, these deviations may be completely
ignored, since they lie within the accuracy limits of durability
experiments. Under ehe usual conditions of dunamometric tests,

105
as well as during cyclic loading with a small frequency , the

values for durability computed by means of (V.17). agree with

experimental results (Fig. V.8).
Thus, the durability of a polymeric material under variable

load may in many instances be computed by means of Bailey's

criterion. This is a straightforward problem. The opposite
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problem may also be solved: determine parameters annd n

Y i
Zhurkov's equation from data from dynamometric tests conducted

at several temperatures., The tension curves obtained as a result
of such tests must be reconstructed into coordinates of true
stress - time. Generally, these curves are of variegated form,
and cannot be described by some kind of simple equation. Then the

113
problem can only be solved graphically.

Let us write Bailey's criterion with regard to Eq. (V.l), in

which stress changes with time by the arbitrary law (t):

,‘e;(ﬂ

dt .
‘S Voo | (V.20) .
¢

e K

After conversion of relation (V.20), we find for a certain tempera-

ture i:

r)
t”'/f 9, (O)/RT, v (v.21)
In j e =In1g4- 2~
J RT;

where t,., i is the time to fracture of the sample at tempexrature

Ti; 0j(t) is the dependence of true stress on time at the same

temperature,

By conducting dynamometric tests at several constant tempera-

ture T;, we derive a set of equations based on (V.21). A solution
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to this set may be found with any trial-and-error method. It is
desirable that the number of equations in the set exceed the

number of unknowns (U,,Y , and 75), since in this case the results
obtained may be correlated and checked. The problem is greatly
simplified if the interval in Eq. (V.21) is determined in finite
form, for example with a linear increase in stress with time ¢ = vt
Then the parameters of Zhurkov's equation are easily determined

by a special nomogram.ll4' 115

The parameters in Zhurkov's equation are determined from
data from thermomechanical tests in similar fashion. By keeping
stress constant and assigning a fixed mode of increase of tempera-
ture with T (t),let us write Bailey's criterion with regard to
(V.1) in the following manner:

' %;ﬂ
. dt

U.—Yo
T RT (1)

where t, is the time to fracture under the conditions of a

thermomechanical test.

To determine the integral in (V.22) in finite form, it is

convenient to make use of modes of heating conveyed by Egs. (1.88)
or (L.89). By conducting thermomechanical tests at several

constant stresses o3 and having determined the durabilities t.,

¥
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i corresponding to them, one can easily find the values of para-

meters Ujand Yy by a special nomogram.l15, 116

55




Chapter 15

The Mechanical Softening of Polymers

As has already been mentioned above, the softening of polymers
together with fracture is the most dangerous form of loss of
vork capacity. Mechanical softening is manifest in the develop-
ment of large deformations of a polymeric solid under load. For
amorphous glassy polymers, this effect is called forced elasti-
cityl' 2, and for crystalline solids - recrystallization.3' 4
In all cases, the deformation process process entails the rear-
} rangement of the original structure, affecting all levels of
s

the polymer's super-molecular and molecular organization - from

the mutual displacement of large structural elements to changes

in the form of individual macromolecules, even to the point of

their fragmentation.

Depending on temperature and load conditions, these different
deformation mechanisms are unicuely superimpcsed on one another,
while one may predominate. Independently of the mechanism, the

. . development of significant strains in a polymeric solid leads
to a loss of its capacity for work, even though it remains intact.
Naturally, we are speaking of herd plastics, which must preserve
their form under load. Yet still another, equally important
é demand may be made of such polymeric materials: to "collect"
the required stress and store it for the entire period of the

material's work.
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In the first case, products fabricated in a given mode of
strain should, according to their working conditions, ensure
the creation of the necessary stress (inpparticular, the trans-
mission of force through a shaft made of a polymer). In the
second case, we may designate all devices (in particular, the
rubber seals for piston devices) which ard made hermetic by a

certain compressive force.

Thus, examining the possible reasons for the loss of work
capacity in a solid, one may indicate two general instances:

1) deformation exceeding tolerable levels develop

1) deformation exceeding tolerable levels develops under

given load-conditions;

2) stress is reduced below required levels due to relaxation

under given load and temperature conditions.

Naturally, in the first instance we may examine the process
of creep in polymeric materials, and in the second - the general
process of stress relaxation. Both are determined by the modes
of mechanical and thermal action, and special cases where o =
constant and T = constant or € =constant and T = constant give,
respectively, the simplest processes of creep and stress relax-

ation usually studied.
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Before proceeding to a detailed examination of these funda-
mental instances of work-capacity loss, let us turn to the important

concept of the thermal stability of polymers. In connnecting

thermal stability with the loss of strength or softening of
polymeric materials® . this property is usually characterized by
the glass point (for amprphéus ﬁard plastics) or the temperature
close to the melting poing (for crystalline polymers) at which

the original structure of a solid cannot be maintained.

In practice, thermal stability is characterized by several
temperatures (for example, thermal stability according to Vika or
Martens) at which deformation may develop to a strictly defined
degree under given test conditions, It is not always considered
that with such a characteristic the actual sofetning of the
polymeric material may occur not only at the glass point, deter-
mined under certain load and temperature conditions, but at any
point in the temperature range for the glassy state, if -other

stresses are applied or if the duration of their action is changed.

The latter is most important, because the time factor plays
an important role in the mechanical behavior of polymers. Thus,
whether we are speaking of the work capacity of polymeric
materials in general or of thermal stability in pérticular, we

need to relate temperature, stress and period of time for which

work capacity is preserved to one another.

Hd
)
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The work capacity (thermal stability) demands on polymeric
materials formulated above lead to a physically expedient
characteristic of work capacity having a sense of the time
interval over which work capacity is maintained. 1In the first

case, this time is t¢,,over which strain reaches a certain tolerable

level. In the second case, it is time ty, over which stress, in-
creasing or decreasing, reaches a certain tolerable level. Let

us examine these cases in greater detail.

The Work Capacity of Polymers In Creep’ (lst Case)

The conditions according to which deformation € (t) should
not exceed a fixed tolerable magnitude €Epr May be formulated in

the form of an inequality.

MORSLY (V.23)

&)

The time interval for which this inequality holds determines the
work capacity of hard solids, since they should not change their
form above certain limits during any mode of mechanical and thermal

action. It should be noted that thre inverse inequality

(i

e(t) = e (V.24)

=

k=]
©

requires the development of deformation at least up to the fixed

magnitude. Such requirements must always conflict during the




fabrication of finished products from polymeric materials (for
example, cold forming, stamping, etc.). Consequently, inequality
(V.24) determines the feasibility of the material's fabrication,
since it must be satisfied inthe time allowed by a given fabrication

method.

Let us examine the region of tolerable magnitudes of deformation
in which the value €pr should be found. For this purpose, we turn
to ordinary creep curves. Tests show that the rapid development of
deformation begins only after a certain period of its slow develop-
ment, and is accompanied by a spasmodic change in the conditon of
the solid. The study of creep curves as well as data® — 16 recently
obtained show that generally the creep curve may be subdivided into
three sections (see Fig. II.30). The last section reflects the
rapid growth of deformation, e.g. the softening of the material.
This third section of the creep curve, formed over a definite
period of tipe under load, corresponds to a certain magnitude of
deformation designated by €., (see Fig. II.30). The spasmodic
change in deformation during its passage through g, is observed
not only in the special case of isothermal creep when ¢ = constant,

but in any mode of mechanical and thermal action.

Naturally, the first - but not always adequate - requirement of

the material with respect to its efficiency will be

Enp < Exp
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since the form of the material changes raiidly after deformation
equal to has been attained. The condition required for
workabiiity (ability to be fabricated), of course, is written in

the form

Snp; exp (Vo 26) .

. Since deformation greater than ¢p,. has a forced-elastic character
(see Chap. 5), the product holds the form given it during fabrica-

tion long after removal of the load.

Both of these conditions /TV.25) and (V.26)7 may prove to be
inadequate. For example, many workpieces may prove incapable of
work even at magnitudes of deformation below €,,.. In these
cases, the tolerable level of deformation, and hence the durability

of the form, is determined by the particular demands madeof a given

product. Requirement (V. 26) may also be unsatisfactory if deforma-

tion much greater than €. is required for the fabrication of a

KX

specific product.

In order to determine the period of time over which the dis-

- turbance of the material's forms does not exceed tolerable limits,
it 1s rnecessary to know the dependence of deformation on time. Let
us examine general cases of such, and proceed later to specific

problems of mechanical action.

e
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As is know 17/ 18, when one 1is speaking of isothermal conditions,
deformation is generally a function of stress history Under
non-isothermal conditions, deformation is a function of both
mechanical and thermal T (t) history over a period of time

from O to t:

-~ - ’ -
v e(t)=o[oq’); T q:)] (V.27)
It is assumed ere that the temperature was constant up to t = O,

and that mechanical stress was absent.

In the case given, we are interested in the time which elapses
from the moment of the beginning of mechanical and thermal action

until the development of a deformation equal to €p In other words,

r-
we need to determine the durability (longetivity) of the form ty
of a polymeric material, since the material loses its capacity for
work at the moment ultimate deformation €pr is attained, owing to
an intolerable change in its form. Obviously, the durability of
the form is determined from (V.23), providing conditions exist
whereby e(tyg) = €pr+ and in accordance with Eq. (V.27):

“b [¢ «
=0 — . b} .
.?% [U%L (Q]’ (v.28)

: It follows from Eg. (V.28) that the form's durability t¢ is
; also a function of functions o(t) and T (t). Let us illustrate

this with a special example.
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Let us examine an isothermal (T = To) deformation and assume that
the function in Eg. (V.28) is linear accoxding to stress.* Then in
place f Eq. (V.28) we may use Boltzmann's equation (see page 110)

which is our symbolization takes the form

ty
0(!@) +I q:(l¢—f; TQ)G(I)llf (V.29)
[

Enp= Ty
e ET)

3}
-~

where E(T,) and ( ;T,) are respectively, the instantaneous modulus
of elasticity and a memory function (dependent on w = ty - T, .

accounting for stress history - taken for temperature T,.

It is obvious from Egq. (V.29) that for a specific material, e.q.
for knowns E(Tp) and ¢(w:;To), and for a specific magnitude €pr+
the form's durability t¢ is completely determined by stress history
o (t), so that it is a function of stress. If the process were
isothermal, tg would depend not on the value of Ty, but on the

entire thermal history.

Now is is expedient to find the conditions undex which the
material attains the specific magnitude of deformation most rapidly.
Consequently, we need to determine the value of tg. which
corresponds to the minimum amount of time required for the develop-
ment of the tolerable deformation magnitude €pr- This may be
accomplished with an examination of any possible stress histories,

under conditions limiting their absolute value, e.g. |o(t)]|<op.

* Linear according to stress means that function (t¢ - T; To)
in Eq. (V.29) is independent of stress.
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Considering that (tg - t; Tg) is a positive function, mono-
tonically decreasing with an increase of (t¢ - t), and replacing

-

0(t) with its maximum value oy (e.g. examining creep at constant

stress op), we obtain

{ .
=_9%m fo—1: T d

or, designating tg -t =w

. o ' (V.31)
an=-£-—("—‘m—+0mJ ¢ (w; To)dr

Joes)

It can easily be seen that with the substitution of g for o(t),
the value of t¢ can only decrease. Therefore t¢, determined from
Eg. (v.31), is the least of all time periocds for attaining deforma-
tion €pr. This is valid for any isothermal modes of change in
stresses, not exceeding the magnitude onp. Thus, Eg. (V.31l) gives
the value of time period t¢ over which work capacity is guaranteed,
e.g. deformation in the material will not exceed the specific value

€pr in this period of time if stress is not raised above op.

In similar fashion, an arbitrary thermal history of creep may
be examined and the non-linearity of the dependence of deformation
on stress may be confirmed. For this purpose, it is necessary to
introduce the dependence of the parameters of memory function

(w;To) on stress and temperature.
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Returning to a material's fabrication ability, we note that
relation (V.28) determines the time required to obtain the
necessary deformation €pre If the modes of mechanical and
thermal action are fixed, then the duration of the fabrication
process is determined, for example, the duration of isothermal

molding at a certain temperature and fixed pressure.

If the duration of the fabrication process is fixed, e.q.
t¢, as well as the value of €p, then one must find from relation
(V.28) the thermal-mechanical modes that are satisfactory, and
select the most convenierit mode. This generally difficult problem
may be solved in individual special cases, for example, corresponding
to Eq. (V.29). The examination of these questions is interesting

to itself, but lies outside the scope of the present work.

According to relation (V.25), the most dangerious instance of
loss of work capacity arises when deformation exceeds €y,. At
this moment, a neck is formed and deformation begins to increase
very rapidly. The material is softened. The formation of a neck
and the softening of polymers is best studies under uniaxial
tension at a certain velocity. The tension diagrams obtained for
amorphous and crystalline polymers under such conditions are

described in detail in Chapters 5 and 11l.

Neck formation is also possible under a constant load. Systematic

investigations6 - 16 have shown that when ¢ = constant, a fixed
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amount of time passes between the application of a load and the
formation of the neck; with the time interval called the

induction period. The greater the stress and the higher the

temperature, the less the induction period.

In accordance with the terminology used above, this period will

be called the durability of the form of the material under constant

stress and temperature, and will be designated ty. It was shown®
that for crystalline polypropylene, original and modified with
artificial nucleators, the dependence of t¢ on temperature T and

stress o is described by the eguation

Tp=AdbUIRT (v.32)
where A, b and U' are parameters of the material.

The processes of fracture and creep were studied from these

same viewpoints in polypropylene, and in other polyolefins.12

Under constant load, various forms of work-capacity loss may
be observed. Depending on the load and temperature, these polymers

may display brittle fracture (without neck formation) or softening

(With peck formation).

During tests conducted at the same temperature, both brittle
and non~-brittle fracture may be observed in polymer samples. Large

constant loads cause fracture of the sample earlier, but small
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12 have

stresses lead to softening (neck formation) first. Authors
found that the life of a polymeric solid t and the durability of
its form t¢ lie nn the same stress function curve and, conse-

quently, are subject to the same equation, (V.1l).

Under constant load and-temperature, glassy polymess are also
capable of neck formation after a certain period of time has
elapsed from the moment of the load's application.8 - 10 for
polymethyl methacrylate and polystyrene, the dependence of the

form's durability t¢ on temperature T and stress ¢ is describedl0

by the relation

Up=vS (1 _
T

- ) (V.33)

‘5.5"‘"

Td == T, ¢

]
where t¢'o is the pre-exponential multiplier; U'o'y'and T p are
]
material constants, while T p corresponds to the temperature of
the pole (a fan of straight lines of the dependence of 1lg tg on

1/T come out of this point).

Thus, if a polymeric material is capable of displaying large
deformations, it may neck not only during tension at a certain
rate, but alsc under constant load. This means that necking
(softening of the material) is a kinetic process, and in this

connection is quite similar to the fracture process.
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Figure V.9.

Compression diagram for poly-
styrene (deformation rate

d /&t = 0.02 min~1) at
temperature: 1 - 60°C; 2 - 40;
3 - 20; 4 - minus 20;

5 - minus 50; 6 - minus 140°C.

Under uniaxial compression, the creep curve also consists of
several sections,ll Curiously, if small humps are observed on a
polymer's compression diagram (Fig. V.9), then an abrupt
acceleration of deformation will be observed on the creep curve
after a period of slow deformation increase (Fig. V.10).
Consequently, the durability of a polymeric material's forms is
also depleted during compression at constant stress. The larger

the applied load, the less the time elapsed from the moment of its

application ot the abrupt increase of deformation.

Independently of the amount of stress, and even of test
conditions (creep at ¢ = constant or compression with a constant
velocity), the accelerated growth of deformation begins at practi-

cally the same value.ll Evidently, after the attainment of this
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"critical" deformation, there occurs abrupt overall disturbance
of the material's structure, preceded by the accumulation over

time of elementary softening events.

The formation of a neck has been studied in amorphous films
of lavsan.13 The durability of the form t¢ of this material under
constant stress and temperature is described by relation (V.32).

13, 19 on this

Let us compare the results of dynamometric tests
polymer with the dependences of t¢ on stress and temperature. Let
us assume that, as during fracture, the abrupt nucleation of a
neck occurs after the durability of the polymeric material's
form has been fully exhausted. Then, under increasing stress,
the form's durability t¢ should be determined from a relation similar
to Bailey's criterion:

ty

V.34
6[ T¢(0(f)l (V.34)

where t¢ Zg(tz7 is the durability of a form under a constant stress,

equal to the instantaneous value ¢ (t).
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Figure V.10.
Creep curves for polystyrene
‘under compression. Tempera-
ture and stress are egual to:
1 - 60 °C, 4.5 kgf/mm?;
2 - 40 9C, 5.5 kgf/mm%-
3 - 20 %, 7.5 kgf/mm*;
4 - minus 20 oC, 12.5 kgf/mm
5 - mlnus 50 °c, 14.5 §gf/
6 - 15 °c, 21.5 kgf/mm“. Tlmes

on the absc1ssa for curves 1,
4 and 6 are in minutes; for
curves 2, 3 and 5, in hours.

Substituting relation (V.32) in Eq. (V.34), we obtain

l¢ .
S dt 1 (V.35)
Alo ()]0 IRT

Considering that under dynamometric test conditions the true

- k
stress, as a rule, changes according to the law o * vt (v is the

rate of stress increase over time, t is the time), after integrating

* The relation ¢ = vt is valid only up to the amount of a neck's formation.
This dependence is violated with further tension.
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{(V.35) we obtain

i B (V.36)
ARG

Considering that vt¢ = dve (0 is the limit of forced elasticity), after’
calculating the logarithm of (V.36), we have
BT U’ .

lg%:)— b1 _"2,3RT(b_-_-.l) (V.37)

Eg. (V.37) describes the dependence of forced elastic limit on
temperature T and loading velovity v (under conditions whereby
o = vt). Substituting numerical values for A: U, b and v in Eq.
(V.37) obtained by direct measurement at ¢ = constant and T = constant,

we may construct the dependence of log Oye On 1/T (Fig. V.11).

The values of oye computed by means of relation (V.37) are
always higher than experimental values. This, in turn, indicates
the nonequivalance of structural changes occuring under constant
stress and increasing stress. No direct structural studies have yet
been conducted, however, that allow us to pass unambiguous judgment

on both of these changes.
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The dependence of the

forced elastic limit

Ogye On inverse

absolute temperature |
1/q for amorphous

lavsan films: \
1 - calculated values

of Oye -

2 - experimental values

of Ove.

The efficiency of Polymers in Stress Relaxation (2nd Case)

What is often require of a polymeric material is not that it keep
its form, but that is support a certain stress - often, both are
required. In connection with this, it is necessary to examine the
second case of a polymer's work capacity when stress relaxes further

than that amount tolerable under working conditions.

The condition according to which stress, relaxing in a certain
mode of deformation and thermal action should not be reduced below

a required value Opys Can be written in the form

e >0m (V.38)
{re)

b )
. -

Here, two types of problems are possible:

1) The magnitude of stress satisfying condition (V.38) should

be attained after the passage of time under load tp,:

2) after time of retention t,., the relaxing stress, exceeding

*

Opr should remain greater than it.
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The inverse inequality

————

o)<y (v.39)

may be required in evaluating the feasibility of a polymer's
fabrication (for example, in evaluating the possibility of stamping
polymeric products without creating overly strong breaking forces

in the working apparatus).

Let us look again at condition (V.38), and determine the region
of tolerable stresses in which %or should be found. For this
purpose, let us turn to ordinary stress relaxation curves. A test
shows that if stress created at the beginning of the relaxation
process approximates the value of the forced elastic limit 0y,
then the relaxation processes will undergo abrupt acceleration. This
phenomena often has a spasmodic character, for example, owing to
the growth of a neck during tensile deformation. Thus, there exists
a value 0Oy, above which op, cannot exist. 1In particular, during
tensile deformation at a constant rate, the role of Opr is filled
by the corresponding forced-elastic limit oy ,.

In order to determine the period of time over which the required
stress is achieved and then maintained, it is necessary to know the
dependence of stress on time under the given conditions of deforma-
tion and thermal action. However, let us first examine general

relations.
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To obtain general functions, we use the relation following

from Eq. (V.27)

o e? 7
o(t)=r[e(5); T(;)] (V. 40)
LA

It may be used to solve the first and second problems (see

above). It follows from Eq. (V.40) that the value of Opr is

connected with period tn (e.g. with the period of time necessary

to create the stress o(t) = 0py in a solid) by the relation
(»)

1‘-" 4 x“.) {
onp=F[a o T('ﬁ : (vV.41)

1
) 0 0

It is quite obvious that time under load is a function of

functions =z(t) and T (t). Limiting isothermal deformations
(T = To) and assuming that the function in Eq. (V.41) is linear

according to deformation, we obtain a relation similar to Eq. (V.29)

! n/“')

o, E(To)e(ty) ojf(t(:) T To)e(x)d - (V.42)

Here E (T,) and £ (v ; To) are, respectively, the instantaneous
modules of elasticity and a memory function (accounting for the

deformation history) taken for temperatures T ; w = t, - t.

n
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For a specifically chosen material, e.g. for fixed E (T,)
and £ (v ; T,), and for a fixed value of Opr* the value of t  is
determined completely by the deformation history e(t). It is
apparent from Eq. (V.42) that t,, as might be expected, is a
function of deformation. It'is useful to calculate the value of
period t, required for the dévelopment of minimum stress opr
necessary for the product's work.

If one examines a set of arbitrary deformation processes
characterized only by their uninterrupted increase, then the values
for deformation to moment of time t, may be different. If, however,
the set is such that there exists the least deformation attainable
to moment of time tn, equal to éE (tan'min' it may be asserted
that the stress, in the process of its relaxation of constant
deformation €5, will be the least of all stresses attainable in

this time period for any increasing modes of deformation.

It may easily be demonstrated that stress relaxing at a
constant deformation equal to any of the attainable values of
e(t,) will be less than in any other mode leading to the same defor-

mation €(t,).

Let us prove this assertion. -

From Boltzmann's equation

4 [ -~
0(1)=Ee(t)—‘[/(t—r)a(r)d{? (V.43)

M,
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when (t) = o = constant, we have

-—

~ ’ t .
co(t)=¢ [E_I,,(t__t)d.‘] : (V.44)
| 0 )

It can be seen from Eq. (V.44) that during the increase of deforma-
tion , stress is always higher at any moment, since the expression
in the brackets is independent of €or but o(t) increases with increas-‘
ing €,. For the sets of any undiminishing deformations e(t) attaining
to fixed moment t = t, a certain value €,, minimum stress o(t,) will
be obtained in the mode of deformation e(t) = €5 = constant.

Actually, it follows from Eq. (V.43) that for t = t,:

v

5 4
‘B(:,.):Ee(1H)—Jf(tu—r)e(x)dr (V.45)
(D] W) (~) .

N

The first term in Eq. (V.45) does not depend on the deformation
mode €(t), so that it has (conditionally) a constant value €(ty) = €4,
Obviously, the largest value for the integral in this equation will

be attained when e€(t) = ¢ since all of the deformations observe

o’
under this condition will be undiminishing. Consequently, in the
mode €(t) = €5, stress over time interval t, from the beginning

of deformation will be the least of the whole set of undiminishing
modes of deformation, attaining to moment t, the value €(tp) = £4.
According to Eq. (V.44), this assertion is also valid for modes of

undiminishing deformation attaining to mcment of time t, values

exceeding €.
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A+ deformation equal to /ee(t.) /pmin, Stress will be minimal
since a decrease in the magnitude of deformation at which reiaxation

occurs always signifies a reduction in stress.

Thus, if one is required to create over time t, a stress
treater than or equal to some fixed valueoopr, then this will be

accomplished in any case where e(tn) is no less than eo. Thus *

1aKHuM oopason *

l{(ﬂ) lu/(") - (V 46) ’
o(l(g));ogg)= Eey— J Flty—Sleds=¢, [E—Oj f©) dm]
and for ¢, we have .
ol V.4
el =0=—"1"5 (V.47)
E—~ j [ (o) do

1}

The value of ¢, may be determined from Eq. (V.47) if time under
load tn is given, or time under load t, may be determined if €o is
given. Here, of course, the temperature T, and the value of Opx
should be known.

Let us proceed now to the sclution of the second problem. This

problem consists of the determination of the time interval of retention

relaxing stress t,, in the course of which a stress is created in the

*For the sake of abbreviation, £ (w; To) will from here on be

written simply as f(w), since we are speaking only of isothermal
deformation.)
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solid and, decreasing, remains higher than a certain tolerable limit
pr’ Let us examine one of several possible, sufficiently general
cases. Let initial stress 0,r greater than Opr? be fixed practi-
cally instantaneously, e.g. assume that time under load t, = O.

Then in accordance with Eq. (V.47), the following will be required

to create this minimum deformation

) (V.48)

e [
=
ST E

The value pr will be attained only after the lapse of time ty,

determined in accordance with Eq. (V.43)

. gf#f ! 1 A

. 0(22)= EEO—J f(l(‘;‘x)— T) € dv = (:':)_. godl’pf ((1)) do <"- (V. 49)
ox
t, A" (f"i
L
-—l—rf((o)dco= Oy — Ofip (V.50
E Ok
0 ™)

Let us show how Egs. (V.49) and (V.50) are used to find the

stress retention time t, for a number of polymers. If stress is a

polymeric solid relaxes according to Kohlrausch20

21

, then in
accordance with the work
' - e (V.50a)

! “"’=Ex%(?‘"')k—'e' o/t .

1
(l?) ("p) A (r) S
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if

where tr,k,E and E are constants, while E1 < E.

1
Then it folloWs from Egs. (V.49) and (V.50) that:

. . . (PO
L,
- — (/T )‘]_ Oy—Oip .
£ [1— e Cplrpl| = 5=
1 n © %,
or
()
k ohEy

Y
= Tp IN
:8) ({r’-)l Iubr— E (0x— 0np)

() (er)

(V.51)

(v.52)

Knowing the constants of a relaxing material tr, K, Ej and E,

as well as the fixed values o, and opy, it is easy to determine

the time of retention of relaxation stress, tos in the course of

which stress will be greater than op, if stress o, was fixed at t = 0.

Let us note as well that at E; = E, Eq. (V.52) describes a visco-

elastic solid according to Kohlrausch, for which

0,
Ip=t',,lnl/"( L )
(v &r)

For a visco-elastic Maxwell body.

. o\
{p="1pln (—-——)
" - (") v )

l.’

(V.53)

(V.54)

In practice, deformation is not fixed instantaneously, but

after the lapse of a certain time interval. It time under load
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t, # 0, then it is important to determine the interval of time
t, over which the relaxing stress remains greater than °pr' beginning
from the moment the original stress value o, = o(ty) is attained.

n

In this case, it is sufficient to examine the relaxation of
stress o(t) at t t, and at a constant deformation value €, equal
to its value attained to the moment of time t,. Here, it is not
yet possible to hypothesize how deformation increases during the

time under load. By making use of Boltzmann's equation (V.43), we

have

oM . - -

() (vV.55)

oy =0 (ty) = Eep = [ [ (tu—T) £ (v} ¥
) (O] e ) >

t )
H
Onp =0 (ly+t,)= Fe, — A V.
(rf) ("‘l’ (f)) ° f(ir) ) (If) T)f (1) dr - ( >6)

’ {1 :
) (:'i,'f"g) C
=" g+ 1y —v) ey e
‘H (~v) ()

(™)

By computing the second equation from the first, we find

H 4

L) “ "
o,,—a,,,,=_6]' [t =) —f(ly-+lp—7T)] £ (v) dr + (V.57)
l.,-Hp i
te [ Htntty—T)de &
‘H
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hence, considering that

we have

kﬁh t:® (V.57a)
"F(tx = by —1) dt = ' .57a
) ! f( &t 1) dy f f(0)do
o) )
T a o a® (V.58)

n— Ti 1 ) —fllutlp— g(v)dc (v.58).)
f f(m)d(.,=°__e:£_p_+_aj e R ’(L-)T ® )

*

n

In the special case where tﬂ = 0 (instantaneous loading), o, =

Ee,, and Eq.

(V.58) is converted to Eq. (V.50). The integral in the

right member of Eq. (V.58) is always positive, as if there were no

mode of increase in undiminishing deformation €(t) during the

period under load /it should be noted that £ (t, - t. - t)> f(ty - t),

since the memory function always decreases with an increase in its

argument/.

standing in

Thus, the less the upper limit tr of the integral

the left member of Eg. (V.58) the less the right member

of this equation. Consequently, it may be asserted that .the time

of stress retention, determined from the condition

v

A e (V.59)
j (@) do = =0
0 ('}

will be minimal. )
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Thus, finding the value £ty from this guarantees a period
of retention c¢f a stress, greater than °pr' created with any
magnitude of deformation attaining the value g5 in the course of
t, and thereafter remaining constant, with the loading of undiminishing
deformations, for which e(tn)>eo, and with_deformations continuing

to increase in any manner after stress o, is attained.

All of the avove-mentioned, of course, amy be distributed
over a non-isothermal mode /see Eqs. (V.40) - (V.42/ and non-linear
deformation. The relaxation properties of polymers under non-

isothermal conditions will be discussed below.

Returning to the general problem oZ the work capacity cf a
polymeric solid in different modes of mechanical and thermal action,
the value of creep experiments conducted at o = constant and relaxation
experiments conducted at € = constant should again be emphasized.

The systematic investigation of these basic types of relaxation
processes in polymers is vital, especially in connection with their
structure. More attention should be given the non-linearity of

deformation and relaxation processes.

In many important practical situations, stress and deformatio
are such that the linearity of laws governing relaxation are ob-
served, so that the above relations can be used. However, a non-

linear effect (in particular, necking during tension) connected

Y
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with a change in the structure of a stressed solid is displayed
at sufficiently high deformations and stresses. This circumstance,
which cannot exceed a certain stress value (ok,) at any deformation,

is also an example of the non-linear behavior of relaxing polymeric

solids.

In principle, the above relations may be generalized for the
region of non-linearity (by using non-linear functions introduced
by Volterra17’ 18 to describe mechanical relaxation phenomena).
However, at present this problem is still far from a solution,
so that it is important here that systematic experimental data

be introduced.

Let us examine these data23 for characteristic representations
of three classes of glassy polymers: polymethyl methacrylate,
polycarbonate with a base of bisphenol-A and aromatic polyimide

anilineflourene, and tetracarboxydiphenyloxide.

In order to determine the stress retention time, including the
critical Okr, it is necessary to conduct a series of stress

relaxation tests within a potentially large range of deformations.

At a chosen temperature, a series of ordinary stress relaxa-

tion curves are determined, with each curve corresponding to a

The chemical comggsition and synthesis of this polymer is
described in the work.
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certain constant deformation. Figure V. 12 shows such a series
for polymethyl methacrylate at 50° C. In the region of small
deformations, the relaxation curves are regularly shifted upward
with an increase in €. In the region of large deformations,
relaxation stresses pass deeper, and the curves begin to move
downward. This is also a manifestation of the non-linearity oi

relaxation processes.

In each series of experiments, depending on the fixed
temperature, the deformation ranges should be chosen so that the
dependences of stress on deformation, taken for the same moment of
time, pass through the maximu. To observe the maximums, the
relaxation curves are reconstructed on the coordinates stress-
deformation. Thus, if the curves shown in Figure V.12 are re-
constructed on these coordinates, a new set of curves is formed
(Figure V.13). Each curve corresponds to a strictly defined
duration of the stress relaxation process, and the maximum on
each characterizes the greatest stress that can be maintained by
a polymeric material in the course of the indicated intexval of
time at the given temperature, e.g. it characterizes 0y, (see

page 412).

This characteristic of a polymeric solid is very important
since when time t, has expired, stress theoretically cannot be

greater than oy,. A higher stress simply cannot be retained in the

course of tr. Henceforth, we will use only these maximum stresses, -
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since we are most interested in evaluating the duration of the
retention of the highest possible stress and in characterizing

the role of the process' nonlinearity.

Of particular interest is the dependence of equilibrium
stresses oo on deformation, which correspond to the duration of
relaxation t, = oo  The maximum value 0go has the meaning of oy,
for indefinitely large time intervals. In order to determine the
value of 050 , We may use Kohlrausch's equation:

.- e i
o (1) = o ('/(t,”)) I g, (V.60)
where o(t) is the relaxing stress; 05, k and t,. are parameters of

. oy *
the curve; 0yo is the equilibrium stress.

* In accordance with Eg. (V.60), the value of o0gq
characterizes that stress which is established during time of
construction t-+oo. In actuality, as experiments conducted?>
earlier have shown, new drops in stress with subsequent new
retardations of relaxation caused by structural changes may be
observed on the relaxation curve over fixed periods of time.

a consequence, the value of oo May be regarded as a conditional
characteristic of equilibrium stress; it is determined by the
extrapolation of ¢ to t = oo in accordance with Eq. (V.60). However,
having determined the value of coo and all other parameters of

Eg. (V.60), one may calculate the tressswhich will be attained over
a very long period of relaxation??®, of course barring further
structural changes.)
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Figure V.12.

Series of stress relaxation
curves for polymethyl
methacrylate at 50 ©c. Each
curve corresponds to a
specific strain.

Figure V.13

The dependence of
stress on strain for
polymethyl metha-
crylate at 50 ©cC.
Duration of the rel-
ation process:

1l - 1min; 2 - 3;

3 -10; 4 - 60 min.
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Having determined maximum stresses Oy (tr' T) corresponding
to a specific duration of relaxation t, at each temperature T, and
having completed measurements in all accessible temperature range
up to the glass point, one should construct the temperature
functions of these critical stresses atcconstant values of time
t

¢+ Such functions are shown in Figure V. 14 for polymethyl

methacrylate, polycarbonate and polymide.

It is obvious that the greater the required time under load
and the higher the temperature, the less the stress that will be
retained by a polymeric material. Moving along line A - B in
Figure V. 14, a, e.g. examining the constant stress condit on,
one may see how the duration of the retention of a chosen stress
changes with temperature. Furthermore, looking at isothermal
conditions (line C - D), it is easy to determine how the duration
of the retention of critical (e.g. maximum) stress changes with
increasing values of this stress., If a fixed value is assigned
the stress retention period, one can always determine the maximum

temperature at which this requirement will be met.
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Let us go on now to quantitative relations.

Figure V.14

The dependence of critical stresses on temperature
for polymethyl methacrylate (a), polycarbonate (b)
and polyimide (c). Duration of the relaxation
process:
1-1min; 2 - 3; 3 - 10;

4 - 60 min; 5 - oo.

It should be noted

beforehand that in logarithmic coordinates, the dependence between

t. and 0y, is rectified in the range of values of t, from minutes

to 104 sec (Fig. V.15).

temperature.

The slope of the lines depends on

Having designated the absolute value of the tangent

of the line's angle of slope as o and having constructed a graph
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of the dependence of on temperature, one may observe a very

interesting pattern (Fig. V.16).

These graphs have the form of broken lines. In the presence
of a broad glass-transition region, the broken line consists of
three sections, e.g. there exist three temperature ranges in
which the dependence of aon T is different (see Fig. V.16). The
value of adecrease with an increase in T in the first section, are
independent of temperature in the second section and again de-
crease in the third section (the one closest to the glass point).
Two such sections exist for polycarbonate, and only one - the last

section - exists for polymethyl methacrylate.

Thus, the characteristic form of the dependence of a on T
testifies to the fact that before the transition to brittleness,
the glassy-state region may be subdivided into substates in which
the mechanisms relaxation processes are different. Between these
substates, of course, transitional regions are observed. For
polyimide, these regions correspond to temperatures 100 and
200 °c. For polycarbonate, one can distinguish two substates with
a single intervening transition region ( 100 Ocy; for polymethyl

methacrylate - only one substate.
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Figure V.15

The dependence of log t,. on log Oy for poly-
methyl methacrylate (a), polycarbonate (b)

and polyimide (c). at different temperatures.
The number on the curves are the tempera-
tures in ©c.

Since the graphs of the dependence of log t, on log Op, are

straight lines (see Fig. V.15), it may be written that at

T = constant

ID=BOﬁ

SR (V.6l)

where t,. is the time over which the required stress is retained, e.g.
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the work capacity of a solid compressed to a specific magnitude of
deformation; oy, is the constant stress; B and o are parameters,

generally temperature-dependent.
The dependence of o on temperature examined above (see
Fig. V.16) may be described with sufficient accuracy in each of

the substates by the relation

Q@ = 0y~ XT (Vv.62)

il
o
.

while in the second section x
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Figure V.16.

The dependence of a on temperature for polymethyl
methacrylate (a), polycarbonate (b) and polyi-
mide (c).

23

Experimental data show that the dependence of log B on l/T

also has a linear character, so that

B = pel/RT (V.63)

where A and U are material parameters.
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Then Eg. (V.61l), with respect to (V.62) and (V.63) is

written thus?*

“a

£, = Aoj (@ *T)U/RT (V.64)
. (] )

In the case where x = 0, Eq. (V.64) takes the form

b= Ag—%UIRT (V.65)
)

Similar relations have been derived for calculating the
durability (wear life) of rubber?® and to describe the induction
period of necking under a constant load6 (see page 408). Shown
below are the numerical values for parameters A, U and ¢, in

Eq. (V.64) for the range of temperatures in which x = 0.
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Figure V.1l6a.

* In the case where x = 0, Eg. (V.64) takes the form

. ' T (kv) . -

_b_j' i_ A (’ 0 )*(“-""T’ JIRT
b Go .

where t, and 0, are certain constants; parameters A and a, are

dimensionless quantities; 'x has the dimension of the inverse
absolute temperature.

If we choose to = 1 sec and o, = 1 kgf/mmz, then we will obtain
(o] lo] .

Eq. (V.64).
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The quantity U, of course, connotes the activation energy,
although there is a yet insufficient experimental data to

explain the above process, assuming such an interpretation.

It was noted above that gréphs of the dependence of log t.
on log oy, in a limited time interval t, are straight lines.
With large intervals of time, as tests have shown23, they
deviate from the linear toward the side of the increase® in
stress retention time t,.. With large stress retention times
t,, the dependences between tr and Oy (Fig. V.17), as ordinary
stress relaxation curves, are described well by Kohlrausch's

equation, which with variables oy, and t. takes the form

(‘v/’.)k. 0 ¥
up(')_"oe ®» @ Ty (V.66)
(hr) (r)
«3‘
S 400
~ 58
Y XX
é\lé-
T o Jo0
' 1
aq 20 0 60
tp rMuK
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Figure V.17.

The dependence of
critical stresses
on time t_ for
pofymethyl megha-
crylate at 50 ©cC.

* The same deviation is also observed in studies of strength.




The parameters of Eq. (V.66) are marked with an asterisk,
since they are used not for describing classic stress relaxation
curves, but for conveying the relationship between maximum
stress G, and the time t,. over which it is attained. Experiments
and calculations show23, that the dependences of ,* k* and *po on
temperature are linear in each of the above-mentioned glassy sub-
states, but that they may have different slopes. The temperature
function of t§ are linear in the coordinates log tf _ 1/qp.
Generally, the following relations, valid only within the boundaries

of each substate, may be written

Rk (T) = ky— kT (V.67)
0 (T) =0y, o~ 09, 7T (V.68)
0 (T) =0, 0= 0o, 7T (V.69)
w_zp = A"V IRT (V.70)

P i

The values of parameters kg, Kps Ogs O, Oy T, °oo, G, Ogo, T,

A* and U* are shown in Table V.1.

* The same deviation is also observed in studies of strength.27
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‘table V.1l. Numerical Values of Parameters
of Eqs. (V.67) - (V. 70)

1 2&:‘:1.:1:: 3 MoaaxapConar 4 Noaunuxy
fiapamerpu XPHAST
2 60°C | 0-n0°C| w0-140°C | 20-100°C | 160210 €| 210-300° C
0.69 047 047 0,487 0,487 0,487
:.r' 10* 1,67 0.787 0.787 0.683 0,683 0.683
Oq, g0 X2CICME —63 —%3 -—1'7)50 4050 4.'60 480
; w2-2pad 2,75 1. - 3.2 (

o ';mulc(/f::ﬁ PO N | 129 2136 2320 | 1850 | 1513
o kecl(cxt-zpad)) .62 | 275 18 132 | 306 | 243
I A® (cex) —64 | =105 | —7.7 042 | —2 | —475
U*, sxasfmoab 10.8 .6 14,3 36 7.8 13,8

1) Parameters
2) Polymethyl Methacrylate
3) Polycarbonate
4) Polyimide
By using these parameters, one may describe the work capacity,
for thermal stability, of a polymer within the entire glassy state.

For this purpose, we convert Eg. (V.66), having solved it relative

to time:

1 0, (T) .

Inty=———inln — L InTo(T) (V.71)
(‘E") & (T) Gxp— 0 (T) (3)'

(Iv.r)

Equation (V.71) together with Egs. (V.67) - (V.70) shows how the
work capacity of a polymer, (e.g. the duration of the retention

of a stress greater than Okr) changes in relation to temperature

T. This relation is valid within the entire glassy state, although

its parameters may be changed in the transition from one sub-

state to another.

5
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On the Substates of a Glassy Polymeric Solid

Thus, the region of the glassy state should be subdivided
into several substates (not counting brittle), since one observes

several transitions in the range Tor< T <Tg, where T,,. and T, are,

g
respectively, the brittle and glass points. These transitions are
particularly characteristic for strongly linked polymers, having
on very broad glassy region. It is interesting that the brittle
temperature Ty, in such systems is found far into the region of
minus temperatures, while the glass point Tg is located in a high
(for organic polymers) temperature region. Polymers of this type
are aromatic polyamides, polyolefins and polyimides, as well as

many other heterocyclic compounds.s' 28, 29 :

The large difference in the glass and brittle temperatures o
a nuwber of polymer systems allows one to distinguish a broader
temperature range (Tg = Tyy) in which forced elasticity is dis-
played and various mechanisms are manifest for the development

2, 29, 30 27, 31, 32

of relaxation processes and fracture processes,

The wider the interval T; - Txy, the more transitions within it.

g
Thus, three substates and two intervening transition regions are
manifest in aromatic polimide, two substates for polycarbonate,

and one substate for polymethyi methacrylate, corresponding fully

with the temperature range (Tg - Txr).
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Determination of the temperatures of these transitions with
static methods is very important from both theoretical and practical
points of view. The fact is that these transitions cannot always
be observed with dynamic (mechanical and electrical) methods of

study.

These transitions are of practical importance because a
polymeric material begins to rapidly change its mechanical
characteristics precisely at the temperatures of these-transi-
tions and may, for example, remain incapable of work long after
the glass point has been reached. Each polymeric material works
in a stable manner within each substate, especially within the
second substate (see Fig. V.16), in which relative relaxation is

insensitive to temperature.

The transitions of interest to us are made within the tempera-
ture range in which forced elasticity is manifest. It is no coinci-
dence, therefore, that the graphs of the temperature dependences of
the forced elastic limit display sharp breaks (éee, for example,
Fig. II.13). The point (more precisely, the interval) of the break
also shows a temperature transition, dividing the glassy state

into substates.
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In numerous experiments devoted to the study of forced elasti-

city, Yu. S. Lazurkin?

observed two sections of the temperature
dependence of 0,, - sloping and steep, while the latter was in the
immediate vicinity of Tg. It was thereby shown that the glassy
state is expediently subdivided into different substates having
different mechanisms of deformation. It shculd be noted that the
temperature dependence of the activation energy must be introduced

in order to describe the second, steep section (see page 142).

Nevertheless, it may be that the transitions can be more clearly
observed with static relaxation methods, mentioned above. However,
these methods are quite laborious, and we need a simpler and
quicker method of determining all the substates of a glassy solid.

It may prove advantageous to use a characteristic such as the
reciprocal relative stress drop B after a strictly-defined period

of isothermal relaxation, introduced in the works.29' 30
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Figure V.18 shows an ordinary relaxation curve. One may
distinghish several characteristic stresses on it: initial
stressoh, which is developed after the fixing of strain, or
over a very short, strictly-defined time interval subsequent

to this; final stress Oy cor;esponding to a specific period

of lapse of the relaxation process (for example, stress after
one hour). We are interested in the characteristic of the
relaxation process 1/ , the reciprocal of the relative stress
drop:

d__o® (V.72)

B On—o,
(v}

If one conducts a series of stress relaxation tests under
constant strain within the entire glassy state, and subsequently
constructs the temperature dependence of 1/,, he may observe
a pettern such as appears in Figure V.16. Let us introduce
several diagrams as an example. The first (Fig. V.19) shows
the temperature dependence of ljé for aromatic polyester
(polyarylate) terephthalic acid and phenolphthalein.29, 30, 33
Similar functions are shown in Fig. V.20 for polyimide aniline-
flourine and tetracarboxydiphenyloxide, determined at three

constant strains.
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~ Figure V.19

The temperature dep-
i endence of 1/, for
polyarylate tereph-
thalic acid and pheno-
lphthalein.
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Figure V.20
The temperature
dependence of l/B
for polyimide at
different strains:
1 - 4%; 2 - 6;
3 - 8%
It is easily demonstrated that the glassy state is divided
into three substates in which the dependence of 1/B on
temperature is different. In the region of "subsidiary"

transitions, the graphs have a break, defining the transition

points. One of these transitions, the closest to the glass
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point, is observed for many polymers. Below the temperature
of this first subisdiary transition, plastic is found in the
area of stable work capacity. It is also easy to see that the
dependences of lé on T are quite similar to the dependences
of o on T examined above (see Fig. V.16). They show that

the relaxation process oc;urs differently in each of the sub-
states. In one of the substates (sloped section), relative
stress relaxation proves to be almost insensitive to tempera-
ture. With further increase in temperature, the relaxation
process is accelerated, and at T » Tg has completely expired

(the value of 1/6 approaches unity).

Thus a number of transitions within the glassy state may
be detected with comparative ease by a simple series of stress
relaxation tests (at the same strain) at different temperatures
throughout the entire region of the glassy state. The
construction of the temperature dependence of relative stress
drop l/B allows one to immediately find the points of thése
transitions which, as can be seen from Fig. V.20, are practi-

cally independent of the chosen strain.

In conclusion, it should be emphasized once again that in
evaluating the efficiency of polymers, it is necessary to take
into account the different substates lying within the range

of temperatures between the glass and brittle points.
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Regions of the Work Capacity of Polymeric Materials

The methodology set forth in the preceding section may
also be employed in the detailed study oif the relaxation
properties of polymeric sglids, and in determining the period
of retention t. of the moét dangerous (critical) aid any other
stress. In order to determine these characteristics, of
course, a great deal of time must be spent and numerous series
of experiments must be conducted at different strains and

temperatures.

As always, the problem is very much simplified if the
tests are conducted under non-isothermal conditions. By
embracing the entire range of requisite temperatures in one
experiment, one may quickly obtain information on the
working capacity of polymers at any stresses and temperétures.
Thus, often it is most expedient to conduct tests not under
isothermal conditions, but with a continuously changing tempera-
ture.zg' 34
It is especially convenient to conduct such tests under
compression at increasing temperature. A specimen which dis-
plays a certain initial stress as a result of strain will expand
upon heating. Under the conditions of relaxation tests, the
"instantaneously" fixed strain is held constant, so that

stress in the speciment will change very uniquely with increasing

102




temperature. Let us discuss several possible variants.

Before the test is begun, a polymer specimen is placed
between the working cylinders of a device suited for com-
pression testing (Fig. V.2l1l). The space between these cylinders
is thermostated. In the éimplest case, the polymer sample
is situated so that initial strain (and thus tress as well)
within it is zero (Fig. V.21, a); the working cylindexrs of
a relaxometer are attached and the temperature in the thermo-
stat is increased linearly. The rate of temperature increase
may be chosen arbitrarily, but it should not be made tco great,
lest the specimen not be heated evenly throughout its thickness.
For a specimen 3 mm in diameter, a convenient rate of tempera-

ture increase would be from 1.5 to 4 grad/min.

The attached relaxometer cylinders impede the free thermal
expansion of the specimen during heating, so that a stress )
develops within it which may be recorded over different time
periods or temperature ranges. The test results for any polymer
may be used to construct a curve of the dependence of stress

on temperature, shown graphically in Fig. 22,

In the first section of the graph, stress increases up
to a certain temperature, until the polymeric material remains

hard, and then begins to rapidly relax - this leads to the

P4

appearance of a maximum. At the point of the maximum, the
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rate of stress increase resulting from heat expansion is equal
to the rate of its decrease resulting from relaxation. At a
certain temperature, the stress relaxes completely, e.g. falls
to zero. At this moment the curve intersects the temperature

axis. The point of intersection characterizes the polymer's

glass point.

Figure V.21

Specimen and working
relaxometex cylinders
{layout).

The above test of non-isothermal stress relaxation is a

speci~]) case. Generally, the initial strain may be a value
other than zero (see Fig. V.21, b). It is fixed very quickly,
causing the appearance of initial stresses in the specimen. By

imparting different initial strains (and hence initial stresses)
to the specimen, and assigning, as usual, a linear temperature
increase in the thermostat, one may obtain a series of dependences
of stress on temperature (see Fig. V.23). The value of the
imparted initial strain should not be so great as to prevent a

maximum from being obtained on the curve.
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Figure V.22.

The dependence of stress
on temperature in deter-
mining the region of work
capacity. Initial strain
and stress are equal to
zero.
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Figure V.23.

Curves of non-isothermal
stress relaxation (dotted)
and the work-capacity
region of a polymeric
material (polyarylate
isophthalic acid and
phenolphthalein).
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Yet one more possible varient of positioning the specimen
and the working cvlinders of the relaxometer is shown in
Fig. V.21, c¢. The specimen is placed so that there remains
some possibility for free thermal expansion. When the specimen
is stiffened against the upper working cylinder of the relaxo-
meter, a stress appears iA it. At first the stress will in-
crease with increasing temperature, but will begin to decrease

again at a certain stress value.

Thus, conducting the experiments at different strains
(positive, zero, and formally speaking, even negative strains),
one may obtain a set of curves each of which has one maximum.
These curves are shown by the dotted lines in Fig. V.z2. The
geometrical site of the maximum's point (solid line in Fig. V.23)
1imits the region of temperatures and stresses in which the
Jolymer specimen relaxes relatively slowly, and therefore
displays a clearly expressed hardness. This region is called

the region of the work capacity of a polymeric material.29, 34

It should be noted that the set of subsidiary (dotted) curves
converge at one point on the temperature axis, this point

corresponding to the glass point.
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Figure V.24

Work capacity region of polyarylate tere-
phthalic acid and phenolphthalein.

The curve limiting the region of work capacity, in a sense

similar to the graphs, is shown in Fig. V.14. Tests show35

that
this curve corresponds roughly‘to the time of stress retention,
equal to 1 min (the rate of temperature increase here is 4 grad/min).
Of course, if non-isothermal stress relaxation tests were con-

ducted at another heating rate, the position of the curve would be

changed.

The shape of the curve limiting the region of a polymeric
material' work capacity depends heavily on the temperature range
in which the test is conducted. Approaching the work capacity
region, it should be recalled that the glassy state is subdivided
into a number of substates (see page 423)., Each of these sub-
states is characterized by its own relaxation mechanism, which

is reflected in the shape of the curve,
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If the test is conducted within a broad temperature range
embracing several substates, the work capacity region will
appear as shown in Fig. V.24. The curve limiting the region
has an upward curvature and consists of two easily discernable
sections. If the est is conducted in a comparatively narrow
temperature range corre5p6nding to the substate closest to the
glass point, the work capacity region has a different appearance,
and the curve limiting this region has a downward cur ature

and consists of only one section (Fig. V.25).
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Figure V.25.

Work capacity reéion of polycarbonate.

It may be stated that in the latter case a single relaxation
mechanism is at work, with the non-linearity of the relaxation
process clearly evident. Of course, losses of work capacity due

to softening are manifest in the abrupt acceleration of relaxation
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processes. Let us assume that a single Maxwell relaxation
mechanism is acting, and let us coasider the dependence of
relaxation time t; on stress o and temperature T.** We may

then write

do de g

LD gt

. d U _.—Y.0 (v.73)
a © peexp -t -°RT‘9—-&)

... L

If the test is conducted with a linear increase in tempera-
ture T with time t, Eq. (V.73) does not have to be integrated.

In fact

T=T_ + Bt (V.74)

where T, is the initial temperature; is the rate of temperature

increase.

aT

™
I
™
(o)
+

where €o is initial deformation; a is the rate of deformation
increase owing to thermal expansion (a = BK, where K is the

coefficient of linear expansion).

*See Eq. (I.40)
**See Eq. (I.43)
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Figure V.26.
The curve limiting the

work capacity region
(layout).

Combining Egs. (V.73), (V.74) and V.75), we obtain

1 T
dt=—§-dT; X (V.76)

a:mmp%ﬂ=xﬂ

-

do o (v.77)

Eq. (V.77) describes the set of curves represented by the

dotted line in Fig. V.23. However, we are interested in the

curve limiting the work capacity region (solid curve in Fig. V.23).

It pictures the geometrical location of the points of the maxi-

mums of the subsidiary relaxation curves. At these points, the

o
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rate of stress increase due to thermal expansion in the speci-
men is equal to the rate of stress decrease due to relaxation.
In other words, at the points of the maximums on the subsidiary
curves, 4 /dt = 0. Taking this conditioh into account, let us

rewrite relation (V.77).

e _ (v.78)
o= Eatpexp Us. 'RTY’G
Having designated
Ecrp'°=noa=a; (v.79)
we will finally write
lnL_Up.o—\'pU (V080)
6,  RT

Eq. (V.80) describes the curve limiting the region of the work
capacity of a polymeric material. This curve is shown graphically
in Figure V. 26, with all conditional designations included. The
accord of the shape of the theoretical curve (Figure V.26) with
experimental curves (see Figs. V.23 and V.25) indicates the pre-
dominance of a single relaxation mechanism in a specific tempera-
ture range. This range is relatively narrow and is immediately

adjacent to the glass point.
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Thus, if a non-isothermal stress relaxation test is con-
ducted only in one of the substates; directly adjacent to the
point, the process may be described with a single temperature
dependence of stress relaxation time. The correspondence of
the shape of the theoretical and experimental curves limiting
the work capacity region makes it possible to calculate, by means
of the experimental curve, the parameters of the relaxatica pro-

cess - the energy of activation U.s and the coefficient Y . The

o
computational method is explained in detail in the works.29, 34

The Relat .onship between the Processes of Fracture and

Softening

Fracture, regardless of its character, is almost always
preceded by some deformation. Even in the case of brittle fracture,
one may observe local deformations at separate points on the sur-
face of the fracture. Under durability test condition where ¢ =
constant, creep develops in the material. It turns out that the
durability of a polymer is connected in a specific manner with the
creep velocity. In the works36: 37 the following function may be

found

= v& (v.81)

Al

where 1 is durability; ; - the average rate of creep (v = (er - Eu)/T,

where €, and €, are, respectively, breaking and elastic deformation);
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m and A are material parameters.

This dependence has been theoretically substantiated.38

Eq. (v.8l) has a special character and is satisfied for hard
polymzrs. To find the relationship between the breaking stress
and deformations in elastomgrs,,the visco-elastic properties of
the material are examined3? with consideration of the Muni-Rivlina
equation égée Eq. (III.17L7, along with the crack propagation
process. Much of the material from studies of rubber fracture is

set forth in a monograpk by V. E. Gul.40

The initiation and growth of sub-microcracks plays a large
role not only in the process of polymers' fracture60, 61 bnt also
’

in the acceleration of deformation processes.62, 63

Many authors connecting the deformation mechanish with the
initiation and propagation of cracks in a specimen devote much of
their attention to studying the character of the fracture's surface.
This question has been repeatedly examined in many works (many of
which are cited above). A number of these works include many
microphotographs of the fracture surface, with very characteristic
patterns imprinted on the photographs created by local deforma-

tions of the material in individual microregions.

Without going into these experiments in greater detail, let

us note work done recently. Part of recent efforts have been
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devoted to methodological questions (determination of the mean
coefficient of rupture within "silver cracks'43‘ calculation of
the work done in the formation of a new surface during cracking44,
etc.). Orientation effects in the peaks of microcracks have

been concede? a large role in the strengthening of a material.

Systematic studies of the character of the fracture surface
of glassy polymers have been conducted by Kambour.45 - 48 The
area embraced by modification of the material on this surface
may be as much as several microns inthickness. As a re;ult of
these studies, the form and dimensions of "silver cracks" have
been determined for a number of polymers; also accomplished was

the determination of the magnitude of ultimate elastic strains

within the cracks, an explanation of the role of heat effects in

crack propagation, etc. Information on the modifications of material

on the fracture surface, the topography of this surface and other

corresponding phenomena may also be found in such works.49 -54

For some time now, the results of fractographic studies of
the surface of polymers' fracture have been correlated with the

temperature-time dependence of strength64 - 65

A characteristic pattern in the shape of a parabola is formed
on the fracture surface of glassy polymers during brittle fracture.
However, the brittle fracture of such polymers is not always

accompanied by the formation of a parabola. If a glassy polymeric
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solid is capable of forced-elastic deformation during a moderate
rate of stress, and if the elements of the super-molecular
structure in such a solid are bound to one another with suffi-
cient strength, then under rapid mechanical action, brittle
fracture may occur with the formation of a parabola on the
fracture surface (Fig. V.27). If elements of the super-molecular
structure in polymeric g%asses are bound weakly to one another,
then brittle fracture will be observed at both great and small
rates of stress, and at both low and high temperatures. In this
case, parabola555 are not formed on the fracture surface; there

will be no regular pattern to the lines on the surface (Fig. V.28).

Thus, it is necessary to clearly distinguish two different
concepts: "brittle fracture" and "brittle material." Brittle
fracture may be displayed by practically any polymeric material,
including, as it were, classic elastic materials such as raw
rubber and cured rubbers with a raw rubber base. For this, one
need only reduce the temperature or substantially incvrease the

rate of mechanical action.

Brittle material, due to the pocr coherence of elements of

its super-molecular structure, is not capable of manifesting

marked deformations under any temperature and time conditions

of stress; so that it displays brittle fracture. In this case,
everything depends on the type and dimensions of the super-molecular

structure.
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For example, in films of isotactic crystallized polypropylene,
large well-formed spherulites may develop, and then in the great
majority of cases such a film cannot be drawn even several

percentages. Conversely, small spherulites may develop and under

certain conditionsss the film w?ll, even at the temperature of

liquid nitrogren, be capable of deformation by tens of percent.

Let us turn again to amorphous polymer glasses. These
glasses may have various types o- super-molecular structure. The
most common type is a globular structure, also characteristic for

inorganic amorphous glasses.

Figure V.27.

Parabola formation on
the surface of fracture
of polyarylate iso-
phthalic acid and
phenolphthalein (X200)
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Figure V.28,

Fracture surface of
polyarylate isoph-
thalic acid and
phenolphthalein with
a globular super-
molecular structure
(x 100).

If the globulas are compact, and their constituent macro-
molecules cannot be expanded under stress, brittle fracture will
take place in the presence of very little strain. The ability
of the macromolecules to resist uncociling under stress may be

due either to their rigidity or to the presence of a certain

amount of physical or chemical bonds, "stitching coils."

As we already know, the super-molecular structure in glasses
may, theoretically, be changed, altering it from globular form
to a fibrillar or more complex form. Polymeric glasses of non-
globular structure or "soft" globular structure display marked
deformation, and in brittle fracture a notable change takes place
in the polymer material on the fracture surface. This also leads,
in particular, to the appearance of characteristic parabolas (see

Fig. V.27).
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Thus, from a polymer of a certain chemical composition, one
may formulate different materials, both brittle and non-brittle;
to indicate that a given polymer is brittle or is not brittle is

incorrect.

Thus, the least change in the material on the fracture sur-
face of polymeric glasses occurs in those cases where it is much

easier to overcome the weak forces binding the globule-like

elements of the super-molecular structure than it is to uncoil the

macromolecules and cause the rupture of strong chemical bonds in
the main chain. If this is done, one can observe a very interes

ing pattern.40 - 42

The ability of a polymeric material to display forced-elast
strain plays an important role in the fracture process. It was
noted above that the fracture mechanism may be different in each

of the substates of a glassy polymer.

In the substate in which forced elasticity is manifest, the
fracture process is connected with relaxation (strain) phenomena
in material, which is located jn the peaks of microcracks. G. M.
Bartenev believes32 that the transition from briétle fracture to
forced-elastic fracture occurs as soon as the relaxation time
tr becomes equal to the time tg of the elementary event of crack
propagation. Since the relaxation time and time t. are stress-

L

dependent, the brittle temperature is also a function of stress.
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The correlation of temperature dependences of t, and tg for

polymethyl methacrylate leads to a value for the brittle

temperature conforming to experimental data.?

Another approach to the problem of the long-term strength of
hard solids is based on phénomehological analysis and the use of
methods of continuum mechanics.66 = 69  iIn the work6€, brittle
fracture is examined independently of he creep and is connected
with the process of crack initiation evolviﬂ§ over time. It is
assumed®6 that the process of crack propagation has basically
no effect on creep deformation, but that if it does exert such an
effect, then the creep curves from which the creep equation is

set up will reflect the total effect.

The scalar yx, called continuity, 3 1introduced as a quanti-
tative characteristic of damage to t.. terial. At the initial
moment when damage is absent, X = 1. Over time X decreases, and
at a certain small value X, > 0, main cracks will appear in indi-
vidual weak spots in the material, these cracks intensifying the
fracture process. But since the value of X, cannot be experi-
mentally determined and the time elapsing from the moment of major
crack formation to the complete fracture of the specimen is
insubstantial, then it is assumed that at the moment of brittle

fracture, y = 0.
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Thus, the time to brittle fracture will be know if one can
determine the time over which the value of y changes from 1 to 0.
It is assumed that the rate of change in parameter y depends on
stress and the value of x itself. 1In the work67 structural para-
meter w is substituted for continuity ¥, w being assumed a
measure of "embrittlement." These parameters are related thus:

W - X.

To simplify further calculations, let us assume an exponential
dependence between the rate of continuity change and the ratio oo/x
which may be interpreted as the true mean stress at any moment of
time.

Then

_‘_’o_)" (v.82)

where A and n are certain coefficients at constant temperature
(a > 0).
.
By integrating Eq. (V.82) for X.from X = i to X = 0 and
for t from t = 0 to t = t,, ., we will find the time of brittle
fracture

PN S (v.83)

o = .
*p . (n+1)Aog
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Function V.83 corresponds to an idealized case, when creep

in the material is completely absent.

Since in actuality creep does occur, it should be considered
that stress will be increased owing to a decrease in cross-
sectional area. The process of brittle fracture is thereby

acclerated. As a consequence, mixed fracture occurs. L. M.

Kachanov®é derived the following expression for durability in

creep ty:
- (V.84)
=1, 1—(1—-— -"—’)
. m ts
where t, is the time of ductile fracture, determined by function .

(V.87); txr is the time of pure brittle fracture according to

function (V.83); m and n are parameters in Egs. (V.85) and (V.82).

It is obvious that Eq. (V.84) is valid when tyx ty. AR

approximate model has been constructed to describe the process
of crack propagation in the final stage undec different stress
condtions.

Yu. N. Rabotnov67' 68, 70

, using a hypothesis of the uniform
flow of the crack propagation process, not only determined the
time of brittle and mixed fracture, but also derived functions

describing the part of creep preceding fracture.
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The theories examined above, relating the processes of de-
formation and fracture, were not developed mainly for polymeric

materials, so that their applicability to polymers is still un-

resolved.

Hoff71 studied long-term strength under uniaxial tension,

assuming that as a result of creep the cross-sectional area of
the specimen was diminished over time, with this reduction
having an effect on the magnitude of stress and, therefore, on
the rate of creep in the specimen. For durability he took the
time over which, as a result of creep, the cross-sectional area
of a rod was reduced to zero. Such a form of fracture is accom-

panied by large linear strains and has a ductile character.

Hoff used a relation valid for small strains as a creep L

law

. (v.85)

where "a" and m are experimentally determined constants.

We can assume that relation (V.85) is also valid in the region
of large strains, if we substitute actual values for the stresses

and strains determined with the relations

{ V.86 ]
-an:-;r-(l-;—z); z-‘:k'x-l—’— . ( )

v
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where P is the applied external load; F is the cross-section of
the specimen; 1, lo are the lengths of the specimen at any

moment of time and at the moment of loading.

Hoff derives an equation making it possible to compute the
cross-sectional area of a specimen for any moment of time, and
consequently, the period of time tv over which this area is

reduced to zero:

J (V.87)
7300,

where LA is stress at the moment of loading.

It should be noted that Hoff's approach does not have a wide
application. The results hereby obtained pertain only o uniaxial
tension, and cannot always be generalized for cther forms of
strain. Thus, according to this scheme, creep under torsion
cannot lead to fracture, an ass2rtion contradicted by experimental

data.

Several questions pertaining to the relationship between

deformation and fracture are posed in the works. 2 ~ 89

Having detailed the different approaches to the processes of
fracture and softening based on kinetic concepts, it would be
helpful to proceed to the correlation of the temperature-time

dependences of strength and deformability. Let us note once
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again beforehand that each mode of thermal and mechanical action
corresponds to a specific value of a material's durability - the
time elapsing from the moment of a load's application to the

brittle fracture or softening of a material.

If stress o and tempefatur; T are constant, the durability
of polymeric materials is described by one of the relations
(v.1), (v.3), (v.8), (v.11l) etc. Under these same conditions,
the durability of the form t¢ is determined by either of the
Eqs. (V.32) or (V.33). Depending on the numerical value of the
parameters entering into these equations and on stress and
temperature, the following inequalities will generally be

satisfied.

6> (v.89)

Inequality (V.88) corresponds to the softening of a material,

since the durability of the form t¢ is exhausted before fracture.

Inequality (V.89) corresponds to the fracture of a material, since

durability t is exhausted before the rapid development of deforma-

tion (softening). 1In the special case where t = t¢, fracture
and softening take place simultaneously, and this condition

corresponds with the advent of brittleness.
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The above scheme for fracture and softening is a generaliza-
tion of the well-known scheme for brittle and non-brittle (forced-
elastic) fracture advanced by A. P. Alekcandrov and Yu. S. Lazurkin
presented in detail on page 149.

Let us use in a geometric’characterization of working
capacit.ys7 to graphically illustrate the effect of the conditions
of mechanical and thermal action, as well as the material para-
meters, on the working capacity of polymers. This volumetric
characteristic represents a set of two (or more) areas, each of
which is described by equations of the temperature-time dependence
of strength and deformability. A generalized work capacity region

is conveniently constructed in the coordinates o, T, log t (log t¢).

Figure V.29 shows graphically the different variants of the
reciprocal positions of areas of strength of deformability under

the conditions o = constant and T = constant. The coordinate

planes correspond to certain constant values of , T and log t.

It can easily be seen from these diagrams that, dependingoon the
stress, temperature and material parameters, either fracture

or softening will occur first. The line intersecting the areas
represents the brittleness line, since it corrasponds to the
conditions under which one observes a transition from softening

of the material to its brittle fracture. The region of the
polymeric material's work capacity is determined by the set of the

inner sections of both areas and the coordinate planes.
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Figure V.29.

Volumetric characteristics of the work capacity
of polymeric materials (layout):

a, b, ¢, 4 - different variants of the location

of strength and deformability areas. 1 - strength
area; 2 - deformability area.

The geometrical characteristic of efficiency for polycaprolactam
fiber may be found in the work.58 It should be noted that in
individual cases, the surfaces may not intersect. In this case, if

the area of deformability lies above the strength area, then brittlg
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fracture will be observed at any stresses and temperatures. Such
a phenomenon is very characteristic of polymers with a stable

globular structure.zg’ 33

The geometrical characteristics of
polymers' mechanical work capacity shown in Figure V.29 are valid
under constant stress and isothermal conditions. Generally,

with arbitrary modes of thermal and mechanical action, the time

to fracture or softening is a function of stress and temperature

/see Egs. (V.18) and (v.34)/.

In concluding, let us turn our attention once more to the
several remarkable phenomena described above. One of these
reflects the experimental fact according to which necking occurs
in amorphous and crystalline polymers under conditions other than
uniaxial tension with increasing load. A rigidly constant stress
acting in a specimen also initiates the formation of a neck. The
greater the stress, the less the time that elapses from the moment

of loading until the spasmodic nucleation of a neck.

Thus, the nucleation of a neck is possible not only under
stresses equal to the forced elastic limit Oy OF recrystalliza-

tion stress ¢ . but under other, substantially smaller

rekr
stresses. However, fracture is more carefully studied from these

viewpoints than is softening.
It may be assumed that softening, as fracture, is a kinetic

process consisting of the gradual accumulation of elementary

softening events and leading ultimately to the loss of the
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original form of a solid. The question of the nature of these
elementary softening events remains open at presext. They may
possibly be connected with the rupture of intermolecular or inter-
structural bonds. The results of measurements of the activation

6, 8 - 10, 12, 13, 23, 35

enexgy of the process still have not

made it possible to arrive at any firm conclusions on the process'
mechanism. In any case, it may be asserted on the basis of
numerous structural studies that softening is connected with the
rearrangement of a polymeric solid's structure at all of its

levels.

Let us now turn to another interesting phenomena. A
specific interval of time elapses between loading and the beginn-
ing of necking. Under conditions where o = constant, this period
is determined by Eqgs. (V.32) and (V.33). If stress is changed
with time, the period over which the form of a solid will be
retained is a function of stress and is determined by relation
(V.34), quite similar to Bailey's criterion /see Eq. (V.17)/.
This means that the form of a polymeric solid is lost gradually
under a variable load, and at the moment when the loss of the
form's durability equals unity, large deformations are spasmodi-

cally developed.

All of this allows us to approach the phenomenon of necking

under uniaxial tension at a certain velocity in a new way. During
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tension, elementary acts of the softening proéess are occuring;
over time, the durability of the form of a solid is lost. As soon
as relative durability reaches unity, a neck is formed and
conditions favoring the growth of large deformations are created
(of course, during this, relative "aging" should not reach unity,

or otherwise the specimen. will be fractured).

This scheme allows us to explain all of the phenomena con-
nected with the effect of temperature and loading rate on the
forced-elastic limit o ,, or on recrystallization stress 0, k.-
Thus, by increasing the rate of tension, we approach the moment
of neck formation, and according to Egs. (V.32) and (V.37), a
spasm (nucleation of the neck) occurs at large values or gye OX
Orekr® According to the same relations, an increase in tempera-

ture leads to a lowering of the values of oy and Orekr®
Let us again try to connect the two processes of fracture

and softening. Quite obviously, both of these processes occur

simultaneously. It is well known that fracture occurs on the

molecular level as a result of the rupture of the chemical

bonds of macromolecules and, possibly, intermolecular bonds;

on the super-molecular level, it occurs by means of the propaga-

tion of microcracks and the reordering of structural elements.

All of these phenomena take place under the influence of a

mechanical load.
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The same load also influences the softening process,
regardless of whether softening or fracture occurs first.
Thus, it is clear that the rupture of chemical and inter-
molecular bonds, crack propagation and the rearrangement of

structural elements occur during the softening process.

The question then arises - are not these processes
identical, e.g. do they not occur by means of exactly the same
mechanism? The identity of the mechanisms does not mean that

both processes are fully equivalent.

Depending on its chemical composition and super-molecular
structure, a polymeric solid will be dominated by that mechanism
which encounters the least resistance. Thus, within the range
of oriented systems, the rupture of chemical bonds in the main
chain of macromolecules is more easily effected than the rupture
of a large group of intermolecular bonds along the chains. As
shown by S. N. Zhurkov (see Chap. 14), the fracture mechanism
is such systems is dependent on the gradual accumulation of

broken fragments of macromolecules. This is an extreme case.

In other instances, intermolecular bonds are broken, the
structure is rearranged, cracks are developed, etc. As a result,
a polymeric solid may remain whole, but it will undergo large

deformations, e.g. soften. It should be noted once more that
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from kinetic points of view, the softening process has not yet
been studied as thoroughly as has fracture, and we may expect

the future to bring new and interesting results.
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